
 

 

 

  
 

 

  

 

  

  

 

D3.3 PrivacyEngine 
Software Component 

 Deliverable ID: D3.3 

 Dissemination Level: PU 

 Project Acronym: SlotMachine 

 Grant:  890456 
 Call: H2020-SESAR-2019-2 
 Topic: SESAR-ER4-27-2019 Future ATM Architecture 
 Consortium Coordinator:  Frequentis AG 
 Edition date:  23th November 2022 
 Edition:  01.01.00 
 Template Edition: 02.00.05 

EXPLORATORY RESEARCH 



D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 2 
 

  
 

 

Authoring & Approval 

Authors of the document 

Name / Beneficiary Position / Title Date 

Thomas Loruenser / AIT WP3 Leader 30.9.2022 

Florian Wohner / AIT Engineer 16.9.2022 

Stephan Krenn / AIT Senior Scientist 16.9.2022 

Roman Karl / AIT Engineer 16.9.2022 

 

Reviewers internal to the project 

Name / Beneficiary Position / Title Date 

Eduard Gringinger / FRQ Project Manager 13.10.2022 

Christoph Fabianek /FRQ Technical Manager 13.10.2022 

 

Approved for submission to the SJU By - Representatives of all beneficiaries involved in the 
project 

Name / Beneficiary Position / Title Date 

Christoph Fabianek / FRQ Technical Manager 23.9.2022 

Eduard Gringinger / FRQ Project Manager 23.9.2022 

Marie Carré / SWISS WP 5 Leader 23.9.2022 

Nadine Pilon / EUROCONTROL WP2 Co-Leader 23.9.2022 

Christoph Schuetz / JKU WP2, 3 Leader 23.9.2022 

Lorünser Thomas / AIT WP4 Leader 23.9.2022 

 

Document History 

Edition Date Status Name / Beneficiary Justification 

00.00.01 5.9.2022 Draft for approval All AIT  

01.00.00 30.9.2022 Final version Thomas Lorünser / AIT Final corrections 

01.01.00 23.11.2022 Revised version Thomas Lorünser / AIT Review comments 

 

Copyright Statement © 2022 – SlotMachine Consortium. All rights reserved. Licensed to SESAR3 
Joint Undertaking under conditions. 

 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 3 
 

  
 

 

SlotMachine 
A PRIVACY-PRESERVING MARKETPLACE FOR SLOT MANAGEMENT 

 

This Deliverable is part of a project that has received funding from the SESAR Joint Undertaking under 
grant agreement No 890456 under European Union’s Horizon 2020 research and innovation 
programme. 

 

 

Abstract  

In this document we report the software implementation results for essential components developed 
in work package 3. In particular, proof-of-concept implementations for the SlotMachine privacy engine 
and blockchain components were developed, which are essential components in SlotMachine to 
achieve security and privacy goals. 
The privacy engine enables developer-friendly access to multiparty computation, a method to 
compute on encrypted data, and the blockchain component is used to run a permissioned distributed 
ledger with a dedicated application. 
The document provides general information the software implementations developed in the project 
and delivered for later integration in the full SlotMachine Platform.  After a quick overview of the 
specified software architecture and relevant interfaces we give all information to access, build, and 
deploy the components. We also update the specification developed one year ago where needed and 
summarize the achieved security and scalability with the current version. Finally, we conclude the work 
and highlight necessary actions to reach higher technology readiness levels. 
 

 

 

 

 

 

 

Note: The opinions expressed herein reflect the author’s view only. Under no circumstances shall the 
SESAR Joint Undertaking be responsible for any use that may be made of the information contained 
herein.  

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 4 
 

  
 

 

Table of Contents 
 

Abstract ................................................................................................................................... 3 

1 Introduction ............................................................................................................... 6 

1.1 Purpose of the document............................................................................................... 6 

1.2 Scope ............................................................................................................................ 6 

1.3 Intended readership ...................................................................................................... 6 

1.4 Background ................................................................................................................... 6 

1.5 Structure of the document and relation to other deliverables ......................................... 7 

2 Software Architecture ................................................................................................ 8 

2.1 Overview ....................................................................................................................... 8 

2.2 Privacy Engine ............................................................................................................... 8 

2.3 Blockchain ................................................................................................................... 11 

3 Software Components .............................................................................................. 12 

3.1 Privacy Engine ............................................................................................................. 12 

3.2 Blockchain ................................................................................................................... 17 

4 Specification Update ................................................................................................ 19 

4.1 Privacy Engine ............................................................................................................. 19 

4.2 Blockchain ................................................................................................................... 19 

5 Security and Scalability ............................................................................................ 22 

5.1 Privacy Engine ............................................................................................................. 22 

5.2 Blockchain ................................................................................................................... 24 

6 Conclusion and Outlook............................................................................................ 26 

7 References ............................................................................................................... 28 

 

  

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 5 
 

  
 

 

 

List of Tables 
Table 1: Overview of PE software repository. ....................................................................................... 12 

Table 2: Rank of equation system given by the set of all n! possible swap permutations for given 
problem size n with n2 unknown weights. ............................................................................................ 23 

Table 3: Performance in seconds to compute output for given API calls to PE. ................................... 23 

 

List of Figures 
Figure 1: Components and important interfaces of the PE. ................................................................... 9 

Figure 2: Sequence diagram demonstrating how to use the PE in normal operation for one optimization 
session. .................................................................................................................................................. 10 

Figure 3: PyTest example and demo for component level testing (API tests). ..................................... 14 

Figure 4: Docker deployment configuration for PoC with 3 MPC nodes and one PE instance. ............ 15 

Figure 5: Swagger UI interface description as provided by PE service.................................................. 16 

 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 6 
 

  
 

 

1 Introduction 

1.1 Purpose of the document 

In this document we present the final version of our proof-of-concept software implementation of the 
privacy engine (PE) and associated components as well as the blockchain (BC) solution as delivered in 
SlotMachine. The privacy engine (PE) is responsible for the protection of sensitive information 
provided by airspace user (AU) in SlotMachine and it does so by intensive use of cryptographic 
mechanisms. The Blockchain component (BC) is used as trust anchor, i.e., as reliable, robust and 
accessible append only database, and to manage delay credits/tokens as used in the SlotMachine 
market mechanism. The software modules have been released as open-source software and the 
documents is intended as basic manual. 

1.2 Scope 

This is an accompanying document to the final software implementation for PE and BC delivered in 
SlotMachine. It summarizes the current state of the software implementation and how it can be used. 
In that sense, it describes the realization of the components specified in D3.2 [1] as integrated into the 
platform specified in D2.2 [2], including some minor updates necessary during the course of the 
development. 

1.3 Intended readership 

The document is intended as a quick introductory manual to get started with the software modules 
for PE and BC. It serves as a starting point for internal partners who integrate the components into the 
platform. Additionally, it may also be interesting for external audience who want to study and 
experiment with PE and BC components in its own rights, because both components are also published 
as open-source software. 

1.4 Background 

The current implementation is intended to be used in the final proof-of-concept of the SlotMachine 
platform. It fulfils core requirements regarding security, privacy and transparency as described in D2.1 
[3] and integrates with the overall platform specified in D2.2. The design was developed in close 
cooperation to WP4 and the team working on the optimizer, which is documented in D4.2 [4].  

The final version integrates research results also published in [5], [6], [7], and [8]. However, most 
recent results from [9] are not fully included, because it will require a change in the software 
architecture which cannot be done within the remaining time in the project and is left for future work. 
Nevertheless, the proof-of-concept fully satisfies the requirements and new research results also show 
the potential for future development in potential follow-up projects. 

  

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 7 
 

  
 

 

1.5 Structure of the document and relation to other deliverables 

The document introduces and describes the final version of our proof-of-concept implementation 
delivered in SlotMachine. It is intended as a “get started manual”, therefore, the remainder is 
structured as follows. 

In chapter 2 the software architecture of the two components developed in work package 3 are 
recapped to give a quick overview. 

Chapter 3 is dedicated to the detailed explanation of the repositories containing the software 
implementations released as open source. The code structure is introduced, installation and usage 
guidance are given as well as relevant software development topics are discussed. 

Because we followed an agile development approach the first version of our software specification 
released in D3.2 was subject to minor changes and adaptations. in chapter 4 we summarize the 
updates on the specification which were necessary during the final development phase. 

In chapter 5, we discuss the security and scalability achieved with the current version and discuss 
potential improvements. 

Chapter 6 provides the conclusion and discusses remaining research topics to be addressed after the 
project to further increase TRL level as well as security and performance. 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 8 
 

  
 

 

2 Software Architecture 

2.1 Overview 

The basic idea behind SlotMachine is to build a trustworthy distributed platform which can be operated 
by stakeholders without the need for a central authority. It contains no single point of trust, especially 
with respect to the confidentiality of sensitive user input data, and protected data are only processed 
in encrypted form. Additionally, crucial steps shall be made verifiable by logging essential checkpoint 
data in a blockchain. 

Concretely, to ensure confidentiality of flight preferences from airspace users, they are first encoded 
for the use in the embedded secure multi-party computation (MPC) system and are sent to the 
respective MPC node. During the operation of the platform the sensitive data is processed in encrypted 
form only and never decoded thanks to MPC protocols used. Thus, data is protected even from 
operators of MPC nodes by the very nature of the protocols used. All these mechanisms are 
encapsulated in the privacy engine component (PE), which enables easy and seamless use of complex 
cryptographic protocols. In that sense, the PE encapsulates all cryptographic work into modules which 
can be used without deeper cryptographic knowledge over a simple and intuitive application 
programming interface. 

Nevertheless, a certain amount of leakage in the setting of SlotMachine is inevitable for the system to 
work, e.g., a newly computed flight sequence must eventually be published by the Network Manager. 
This is intrinsic to the application of privacy preserving computation techniques, where the clients 
always learn information they can deduct from the result of the computation and their own input. In 
our example, the airlines know their own preferences but also the new optimal flight sequence, which 
is public information. Therefore, the trade-off between the information that is needed for the platform 
to operate while still maintaining the confidentiality of sensitive information has been carefully studied 
and respected in the design of the component [9], [10]. 

As a general remark, we want to mention that the research focus was on the exploration of novel 
cryptographic methods and their practical impact. In particular we researched and developed novel 
methods for secure data processing and verifiable computing. Additionally, the use of secure 
connections between the different components is necessary and recommended for real deployments 
in production environments. However, we did not use secure connections in our lab deployments, 
because it helped to focus on the research topics and allowed for more efficient testing and evaluation 
of the core technologies. Nevertheless, the switch to secure connections can be achieved by setting 
up a public key infrastructure and enabling standard means (TLS and VPN) in the configuration settings. 

2.2 Privacy Engine 

The Privacy Engine (PE) encapsulates the functionality for secure computation of fitness values of 
candidate solutions. The PE is responsible for the management and protection of confidentiality of 
sensitive input submitted by the participants in encrypted form while conducting computations over 
the inputs using MPC. The PE provides a REST interface for the Heuristic Optimizer to invoke the PE 
and employs MPC nodes, accessed via TCP protocol, to conduct the computations (Figure 1). 

The nodes maintain separate TCP connections with each other, operated and controlled by the 
underlying MPC framework. In addition, each participant locally runs an encoding service, which allows 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 9 
 

  
 

 

participants to encode/encrypt inputs before sending the inputs to the MPC nodes, preventing 
information leakage.  

 

Figure 1: Components and important interfaces of the PE. 

The PE enables the Heuristic Optimizer to compute the relative fitness of populations without revealing 
the underlying inputs, i.e., the submitted weights (utilities) for combinations of slots and flights. Thus, 
after the weight maps have been communicated to the PE, the optimizer can then invoke the PE to 
compute aggregates over the weights in a privacy-preserving way. If the data is encoded and securely 
sent to the MPC nodes, it is guaranteed that no component of the platform has access to the sensitive 
input data of the participants. 

To better understand how the PE should be used we present a typical usage pattern. The PE operates 
on the basis of optimization runs. An optimization run is characterized by a list of flights and a list of 
(time) slots as well as by the inputs (preferences) submitted by the participants. In the following, we 
present the privacy-preserving session for normal operation. 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 10 
 

  
 

 

 

Figure 2: Sequence diagram of the call sequences supported by the Privacy Engine; interaction between 
Client Service, Platform Controller, and Heuristic Optimizer is described in detail in D 4.3. 

The encoding service, locally run by each participant, turns a plain-text weight map into a secret-shared 
form that is suitable input for the MPC nodes. The different shares are encrypted for the respective 
MPC nodes and sent from the participants' local systems to the PE via the platform's controller 
component. In Figure 2 we show the essential message sequences to interact with the PE and the 
corresponding encoding sever. Additional platform communication is omitted for readability. The 
detailed message flows for the overall platform are presented in D4.3 [11] in detail. 

The PE implementation builds on various Python libraries and integrates MPC using different 
frameworks. 

The REST interface and automatically generated online documentation is provided by FastAPI. 
PyInstaller is used to pre-package the code together with all necessary libraries and the Python 
interpreter, so that the components can be put into compact Docker containers based on the base 
Alpine Linux image. As a result, each container (encoder, controller, MPC node) is only about 13 MB in 
size. 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 11 
 

  
 

 

Furthermore, the overall memory footprint during execution is low since the PE does not store any 
data beyond optimization runs and only keeps encrypted input data during the run; no additional 
information is logged, and all computations are executed on demand. 

2.3 Blockchain 

A blockchain-based system is used as a trustworthy storage and as an archive visible for all the 
participants. It is used for two different tasks: as credit archive and as event protocol. The credit archive 
stores the balances for all the AUs. Having the latest credit balances at every time visible for other AUs 
would allow them too much insight in the internal values for slots of an AU. Therefore, the latest credit 
balance is kept private at the controller and only written at a slightly higher time interval to the 
blockchain. As a second part, the event protocol can be thought of as a persistent log file with a 
moderate log level. It is not intended as a fine-grained log that can be used to debug single applications, 
but as a protocol for certain events that are relevant from a systems perspective. It also provides basic 
means for querying the recorded events. 

The trustworthy storage is based on Tendermint Core and other parts of the Tendermint ecosystem. 
With Tendermint there is a clear separation between the application logic and the consensus 
mechanism. The application logic is contained in a blockchain application, which is a similar concept as 
a smart contract with the difference that the code of the blockchain application is kept off-chain. The 
consensus mechanism ensures that blocks will stay part of the chain and cannot be replaced by blocks 
of a different blanch as in other blockchain-based systems like Bitcoin and Ethereum. For the 
functioning of the overall system, it is required that more of the half of the nodes in the network keep 
working and are honest. The minimal number of nodes that allow for one dysfunctional or dishonest 
node is four, which is also our chosen network size for the proof-of-concept. In production, every AU 
would be encouraged to run its own node but would also have the possibility to cooperate with 
another AU and use its Tendermint node. 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 12 
 

  
 

 

3 Software Components 

3.1 Privacy Engine 

3.1.1 Software Repositories 

The whole project is written in Python and uses the FastAPI web framework with the uvicorn 
ASGI web server. MPC functionality is provided by the MPyC framework. PyInstaller is used to 

obtain compact binaries that can be easily bundled together with the small Alpine Linux Docker 
container, yielding container images that are only around 13 MB in size for each of the Privacy Engine 
components (Controller, Encoder, MPC Node). The structure of the software repository is shown in 
Table 1 below. 

 

Controller Component 

Dockerfile to build container 
Implementation in a single Python file 
requirements.in: turned into requirements.txt with 
pip-compile 

Encoder Component 

Dockerfile to build container 

Implementation in a single Python file 
requirements.in: turned into requirements.txt with 
pip-compile 

MPC Node 

Dockerfile to build container 

Implementation in a single Python file 
requirements.in: turned into requirements.txt with 
pip-compile 

See below for contents of docker-compose.yml 

Table 1: Overview of PE software repository. 

  

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 13 
 

  
 

 

The software is also available as open source at the AIT software repositories under the SlotMachine-
Public Folder1 The folder comprises two repositories relevant for the PE. 

On the one hand, in PrivacyEngine-Public the source code for the all components relevant to operate 
the PE are available.  

• https://git-service.ait.ac.at/sct-slotmachine-public/privacyengine-public 

On the other hand, in the PrivacyEngine-Container repository, the pre-built containers can be found 
and directly downloaded and deployed. 

• https://git-service.ait.ac.at/sct-slotmachine-public/privacyengine-container 

 

The software was developed in Python according to known best practices. To avoid certain pitfalls, we 
also rely on additional typing information using type hints and variable annotation which improves 
code quality. Additionally, we implemented test routines for all modules to enable continuous testing 
and integration and provide some additional test scripts to run component level integration tests as 
show in Figure 3. 

Complete PrivacyEngine is built with docker-compose build, started with docker-compose 
up –force-recreate, then tests are run with the help of pytest. 

 

 

1  https://git-service.ait.ac.at/sct-slotmachine-public 
 

https://www.sesarju.eu/
https://git-service.ait.ac.at/sct-slotmachine-public/privacyengine-public
https://git-service.ait.ac.at/sct-slotmachine-public/privacyengine-container
https://git-service.ait.ac.at/sct-slotmachine-public


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 14 
 

  
 

 

 

 

Figure 3: PyTest example and demo for component level testing (API tests). 

3.1.2 Installation and Deployment 

In the base directory, the docker-compose.yml file contains everything needed to build and run 

the complete Privacy Engine. Issuing the command docker-compose build will download the 

necessary base containers and libraries, and build the containers. 

Then, the command docker-compose up --force-recreate will start the fully pre-

configured Privacy Engine and make the Controller interface available at localhost, port 80. 

For our deployment we chose to use a 3-party MPC system. 

Each component of the Privacy Engine is built as a separate container: one Encoding Service (enc), 

one Controller (pe), and three MPC Nodes (mpc1, mpc2, mpc3). The Encoding Service has to know 

each MPC Node’s address, which is accomplished by setting an environment variable called PEERS 

containing a dictionary mapping nodes to their addresses. The MPC Nodes each have to know their 

own port and the other Nodes’ addresses, which is accomplished by the HP1, HP2, HP3 environment 

variables (where addresses with ports signify other nodes, and a port without address signifies the 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 15 
 

  
 

 

node itself). To facilitate integration with other SlotMachine components, the Node addresses are 

symbolic and will be resolved at runtime to actual network addresses by the container orchestration 

framework. 

 

Figure 4: Docker deployment configuration for PoC with 3 MPC nodes and one PE instance. 

 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 16 
 

  
 

 

3.1.3 Usage 

The Controller includes interactive API documentation, provided by the Swagger UI library. It is 
automatically generated from the method definitions and comments in the source code by the 
FastAPI framework and accessible under 127.0.0.1/docs. as shown in Figure 5. In addition, a 
static Open API JSON Schema file can be downloaded there. 

 

Figure 5: Swagger UI interface description as provided by PE service. 

  

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 17 
 

  
 

 

3.2 Blockchain 

3.2.1 Software Repositories 

The blockchain application uses the Cosmos SDK and is written in Go. It is split into two different 
modules, one for the credit archive and one for the event protocol. It follows the general architecture 
recommended by Cosmos SDK with several different parts. Amongst others, there is one part which is 
responsible for creating transactions, another one for processing them. Furthermore, the blockchain 
application itself is bundled with a web server for querying the data of the two modules. 

To follow the best practices for Tendermint applications with the Cosmos SDK, Ignite CLI2 was used. 
Ignite CLI provides project templates and facilitates code generation bases on data structures defined 
with protocol buffers3. The templates and generated code also include a test suite for the different 
modules. Furthermore, Ignite CLI can be used during the development for loading code changes while 
the application is running without the need of restarting it manually. All the manual code extensions 
follow the same practices and style as the template and generated code, resulting in a uniform code 
base that is well structured and easy to extend and to maintain. 

Additionally, there is another web server written in Scala 2.13, that utilises the Play Framework and 
provides a convenient write access based on online transaction signing. Online transaction signing 
provides only medium security but makes the integration in the proof-of-concept very easy. As the 
architecture is very modular, changing the way of writing and signing transactions for production 
would only require moderate effort. 

The four nodes of the proof-of-concept are pre-configured and provided as Docker images based on 
Debian 11. 

The software has been made available as open source on the AIT software site dedicated to 
SlotMachine4 and can be downloaded from https://git-service.ait.ac.at/sct-slotmachine-
public/blockchain-public. 

Additionally, pre-built containers are available from https://git-service.ait.ac.at/sct-slotmachine-
public/privacyengine-container. 

  

 

 

2 https://github.com/ignite/cli  
3 https://developers.google.com/protocol-buffers  
4 https://git-service.ait.ac.at/sct-slotmachine-public  

https://www.sesarju.eu/
https://git-service.ait.ac.at/sct-slotmachine-public/blockchain-public
https://git-service.ait.ac.at/sct-slotmachine-public/blockchain-public
https://git-service.ait.ac.at/sct-slotmachine-public/privacyengine-container
https://git-service.ait.ac.at/sct-slotmachine-public/privacyengine-container
https://github.com/ignite/cli
https://developers.google.com/protocol-buffers
https://git-service.ait.ac.at/sct-slotmachine-public


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 18 
 

  
 

 

 

3.2.2 Installation and Deployment 

For a quick deployment via Docker a docker-compose.yml is provided. For running the containers, it is 
sufficient to execute “docker compose up”. Each of the four nodes provides access via three ports. 

26657-26660: allows low-level Tendermint queries, like requesting the block height or the transactions 
contained in a given block 

1317-1320: allows higher-level Tendermint/Cosmos SDK queries for querying the data of the two 
modules 

9000-9003: provides write access for credits and for events 

 

3.2.3 Usage 

The main ways for other software components to interact with the trustworthy storage is via the API 
for reading and for writing. On Tendermint, the procedures for reading and writing are very different. 
While reading is a relatively simple operation, writing requires the creation of a transaction including 
the cryptographic aspects, the distribution to the other nodes and, finally, the common agreement on 
a block that contains the transaction. For this technical reason, the API is split up and available via two 
different web servers running on two different ports. A Swagger description is also available. The read 
and write requests for the credit archive are already described in D2.2. The requests for the event 
protocol are described in chapter 4 of this document. 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 19 
 

  
 

 

4 Specification Update 

4.1 Introduction 

In this chapter we present some extensions and minor modification to the specification presented in 
D3.2 [1]. However, it does not include any significant changes and does not ask for a new version of 
D3.2, it can be seen as a small amendment to it. 

4.2 Privacy Engine 

During the final integration phase we decided to change the clearing in such way as to return 
aggregated values for each AU. For this it was necessary to change the setup method to also take a 
“mapping” parameter that specifies which flight belongs to which AU. 

In order to compare different ways of calculating and working with aggregated fitness values, we 
implemented two additional methods that work both differently from an MPC perspective, but also 
have different characteristics from the point of view of the Heuristic Optimizer component. 

The first new method (/computeClassification) returns: 

• an unordered list of indices of all configurations whose fitness values were above a threshold 
of 75% of maximum value 

• The index of the configuration with the highest fitness value 

• A truth value indicating whether this highest fitness value is greater than or equal to the 
previous highest fitness value 

The second new method (/computeFitnessClear) just returns the computed fitness values in 
plain text. This API endpoint was introduced for testing and integration purposes and must be removed 
in real deployments. 

4.3 Blockchain 

In addition to the module for the credit archive there is a module for event protocol. There are several 
different events that allow a basic view on what is happening at the moment and what happened in 
the past in the system. These events share some common fields that are defined by the API and some 
further fields that are not specified directly by the API. The latter ones can be changed more easily as 
this would not require any modifications of the code of the blockchain application. 

4.3.1 Event Description 

JSON is used as the general data format. There are several fields that can describe an event, where 
only two of them have to be given for every event and the rest of the fields depend on the type of the 
event. All fields of an event are of type String. The field payload is a string encoded JSON object (i.e., 

with escaped quotation marks). 

Obligatory Fields 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 20 
 

  
 

 

• eventType 

• timestamp (example: "2022-06-10T12:00:00Z") 

Optional Fields 

• airspaceUserId 

• regulationId 

• regulationType 

• optimizationSessionId 

• airportId 

• payload 
 

The table below shows which fields are currently used for each event type. It is not enforced by the 
blockchain application that these fields are present, because it should not be necessary to update the 
blockchain application if this specification changes. 

eventType 

   
ti

m
e

st
am

p
 

   
ai

rs
p

ac
e

U
se

rI
d

 

   
re

gu
la

ti
o

n
Id

 

   
re

gu
la

ti
o

n
Ty

p
e 

   
o

p
ti

m
iz

at
io

n
Se

ss
io

n
Id

 

   
ai

rp
o

rt
Id

 

   
p

ay
lo

ad
 

REGISTRATION_ADDED X X  X  X callbackEndpoint 

REGISTRATION_REMOVED X X  X  X callbackEndpoint 

NMF_CONNECTION_ESTABLISHED X      nmfHost 

REGULATION_ADDED X  X X  X  

OPTIMIZATION_INITIALISED X  X X X X 
optimizationFramew

ork, fitnessMethod 

OPTIMIZATION_STARTED X  X X X X  

OPTIMIZATION_RESULTS_RECEIVED X  X X X X solutionIds 

VETO_RECEIVED X X   X  solutionId 

SOLUTIONS_SUBMITTED X    X  solutionIds 

SOLUTION_ACCEPTED X    X  solutionId 

 

• REGISTRATION_ADDED, REGISTRATION_REMOVED: Specify events, which are added when 
registrations are either added or removed. 

• NMF_CONNECTION_ESTABLISHED: This event is added after the first connection to NMF has 
been successful. 

• REGULATION_ADDED: This event is added for each added regulation according to the flight list of 
the NMF. 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 21 
 

  
 

 

• OPTIMIZATION_INITIALISED, OPTIMIZATION_STARTED, 

OPTIMIZATION_RESULTS_RECEIVED: These events are added when the optimization is 
initialised, started or finished. The event OPTIMIZATION_RESULTS_RECEIVED contains a list 

of possible solutions as its payload. 

• VETO_RECEIVED: This event is added for each received veto. 

• SOLUTIONS_SUBMITTED: This event is added after the solutions are submitted to the NMF. 

• SOLUTION_ACCEPTED: This event is added after the accepted solutions has been communicated 
by the NMF. 

4.3.2 API Endpoints 

POST /add_event 

The used ports for writing on the four nodes are 9000-9003, respectively. An event in JSON notation 
as described above must be added to the body of the request. 

GET /event 

The used ports for writing on the four nodes are 1317-1320, respectively. Analogous to the credits, 
there is a set of parameters concerning the pagination and the number of results per page. The 
parameter for reversing the order to list the newest events first is particularly important since these 
events are most of the time the most relevant. 

• pagination.reverse=true 

It is also possible to filter for some of the fields that are available for events. This allows some basic 
queries on events, but it is just possible to search for exact matches. It is not possible to retrieve some 
results based on partial hits, wildcards, or other advanced querying methods. If multiple fields are 
present in a query, the results are only those events where all the given values match the entries of 
the event. 

• eventType 

• airspaceUserId 

• regulationId 

• regulationType 

• optimizationSessionId 

• airportId 

 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 22 
 

  
 

 

5 Security and Scalability 

5.1 Privacy Engine 

5.1.1 Security Analysis 

The SlotMachine approach for privacy-preserving optimization of the assignment problem is based on 
the idea of splitting the computation into two interactive parts, one which is done obliviously on 
sensitive data and another part which is done in the clear. The performance advantage achieved 
compared to fully oblivious implementation of the Hungarian method is substantial and results from 
the reduction of computations done in the encrypted domain, which are time-consuming and typically 
slower by orders of magnitudes. By carefully tailoring the optimization tasks into plaintext operations 
done in the clear and oblivious operations done on the ciphertext, substantial performance 
improvements can be achieved. 

Performing certain operations in clear comes at the price of information leakage; only specific 
algorithms allow for this kind of partitioning. Heuristic optimization as used in our application turned 
out to be well suited. The challenge was to tailor the optimization algorithms in a way that they work 
with only minimum information to prevent attackers from compromising the private inputs (weights). 
Attackers having access to PE communication must not be able to recover individual weights and even 
for the Heuristic Optimizer the privacy property should hold. 

In fact, ideally the PE only reveals relations between solutions, i.e., an ordering of solutions in the 
population, but no absolute quality parameter. Even with such limited information the Heuristic 
Optimizer is able to conduct privacy-preserving optimization with outstanding performance. 

The privacy of inputs is governed by two facts. First, provable secure MPC protocols in the PE allow 
computations in a fully oblivious way. Second, the PE interface guarantees that the Heuristic Optimizer 
is only revealing information about the ordering of a population of correct swaps. The approach is 
closely related to the concept of order preserving and order revealing encryption, which also reveals 
the order between ciphertexts. In our case we do not even leak ciphertexts, which is even better. Thus, 
the PE serves as an oracle only revealing the ordering of swaps and, therefore, the privacy property 
also holds in our setting. In addition, in the case of classification, the definitive order of a population is 
also hidden, which further increases the difficulty for an attacker. 

Interestingly, the problem of recovering weights from PE queries turns out to be impossible even if the 
PE is also revealing the fitness values in clear. This is due to the fact that if an attacker knows the fitness 
for all possible n! slot permutations for a problem instance with n flights and n slots, i.e., n2 weights, it 
is not able to solve the corresponding system of equations for the weights. This is due to the special 
nature of the assignment problem which requires a one-to-one mapping of slot to flights and only 
allows for column permutations in the weight matrix. Therefore, it is important that the PE only 
answers correct swaps, where each flight is assigned to exactly one slot. 

 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 23 
 

  
 

 

 

Table 2: Rank of equation system given by the set of all n! possible swap permutations for given 
problem size n with n2 unknown weights. 

In Table 2 we show the calculated rank of the system of equations derived from querying the fitness 
of all possible permutations of a problem from the PE. The rank of the equation system is always 
smaller than the number of unknown weights (n2). We calculated the rank for n<10 and we expect this 
property to continue for larger n. This means that even if the PE would output individual fitness values 
an attacker would not be able to recover the weights directly. However, this assumption only holds if 
the weights are independent of each other, which is not always the case in our application. Input 
preferences from an individual participant typically will have a certain structure, e.g., the weights of 
slots for flights depend on margins and priority, which is additional information to be used in an attack.  

Therefore, in our PE interface we offer both options to be used by the optimizer, which can dynamically 
choose the right algorithm depending on the security and performance requirements. In summary, it 
is possible to query the fitness values for allowed swaps as well as only the ordering or classification 
for the corresponding population of swaps. 

5.1.2 Performance and Scalability 

The performance of the final version of the PE component critically depends on the method chosen to 
compute the aggregated fitness values. In the discussion above we see that AU input privacy can be 
improved if only orders of swaps are revealed. However, this comes at a price as can be seen from a 
basic example in Table 3. Depending on the problem and population size as well as given reaction time 
different API calls can be used. As can be seen, the matrix size has a negligible impact, and total runtime 
is overwhelmingly determined by the size of the population. 

 50x50 
Pop 100 

100x100 
Pop 100 

100x100 
Pop 10 

/computeOrdering 8.99 s 9.11 s 0.36 s 

/computeClassification 2.05 s 2.11 s 0.26 s 

/computeFitnessClear 0.08s 0.13 s 0.02 s 

Table 3: Performance in seconds to compute output for given API calls to PE. 

We would like to mention, that the measured values are true for the current implementation based 
on MPYC. The choice for MPYC was done early in the project when the security and problem instance 
was not fully defined and only computeFitnessClear was considered for implementation. 
However, with the advanced approach introduced in [9] we already showed that substantial 
improvements can be achieved also for ordering and especially classification when different protocols 
and a compiler based MPC system is used. We leave the switch to MP-SPDZ for the next iteration of 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 24 
 

  
 

 

the PE as future work. Anyway, this is merely an engineering task, because we already showed 
feasibility and expected performance in our research paper. 

5.2 Blockchain 

5.2.1 Security 

In blockchain-based systems security is already part of the design as they originated in the context of 
virtual currencies, where security is one of the biggest concerns. One part of the security concerns 
write access and in particular that no one should be able to write data in the name of another entity 
or modify data without having the appropriate permissions. This is realised with transactions and 
public-private key pairs that are used for signing. In the Tendermint ecosystem accounts, key pairs and 
signatures are not part of the most basic component, Tendermint Core, but are introduced as a part 
of the Cosmos SDK. So the security for writes relies on the concealment of the private keys and on 
honest nodes that validate all the signatures correctly. 

For the read access, the story is a bit different, because the data is considered to be visible for all by 
default. This is a result of the high demand for transparency because it is hard to trust a distributed 
system without having the possibility to see what is going on. By running a private net, it is straight-
forward to allow read access only to involved parties. Protecting data of one user on the blockchain so 
that it cannot be read by others is a complicated topic as it is in conflict with other design aspects and 
requires some trade-offs. For now, we sticked to keeping the blockchain free of sensitive data by 
identifying information that can be disclosed in order to increase the level of transparency of the 
overall system. 

In addition to its own read and write request, a user often relies also on the correct behaviour of others. 
This depends on the design of the blockchain application, the involved processes and the 
trustworthiness and incentives of the involved actors. In our design, AUs do not have to have a high 
level of trust in other AUs but have to have a rather high level of trust in the controller. The controller 
itself can be split up into several entities that are required to sign a transaction and thus vow for its 
correctness. While this is relatively simple from a technical perspective, it is doubtful if the respective 
roles can be sensibly assigned in our system. A more refined approach is to create some guarantees 
that the written data is correct by providing ZK-proofs and automatically check them in the blockchain 
application. This extension is not part of the proof-of-concept but might be implemented in the context 
of another project. 

5.2.2 Scalability 

As with other distributed systems, it is not feasible to scale a blockchain-based system arbitrarily in 
different dimensions. Basically, there are three dimensions: throughput, number of nodes and block 
finality. Pushing the limits of one dimension results most of the time in reducing the other limits. With 
our choice of Tendermint the time for agreeing on a block is by default 1 second and thus in comparison 
with other blockchain-based systems relatively low. When data is rapidly distributed, agreed on and 
finalised, users do not have to wait long for the transactions to be processed, and can be sure that 
already processed transactions cannot be invalidated at a later time. The fast block finality comes at 
the cost of throughput and the network size. In the proof-of-concept the throughput is about 10 
transactions per second where there are still some possibilities to speed it up, but only to a limited 
extent. Tendermint uses a Byzantine-Fault Tolerant consensus protocol that requires each node to 
receive messages from more than 2/3 of the nodes before being able to agree on one block. Thus, the 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 25 
 

  
 

 

number of messages increases quadratic with the number of nodes. Also depending on other network 
properties, it is feasible to run Tendermint with several hundreds of nodes. None of these limits poses 
any real problem in our scenarios at the moment. But it is also important to note, that some possible 
extensions concerning the security can have a large impact on the performance, which can make it 
even more hard to find a suitable trade-off between the different properties of the system. 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 26 
 

  
 

 

6 Conclusion and Outlook 

We presented a quick overview of the final proof-of-concept implementation of the privacy-engine 
and blockchain component as delivered for demonstration of the SlotMachine platform. The 
implementations are also released as open-source software and all information to get started are 
presented in this document, thus, serving as introductory manual. 

With the release of the final version of PE and BC we were able to achieve our goals and deliver core 
components to enable privacy preserving slot optimization as envisioned in SlotMachine. The 
implementation fulfils all requirements defined and reach an estimated maturity level of TRL3. TRL3 
(experimental proof-of-concept) have been achieved given all the results achieved in the development 
of the privacy engine and blockchain integration as summarized below. We have shown practical 
performance and scalability for our first PE proof-of-concept implementation based on experimental 
data. Furthermore, we also demonstrated the use of blockchain and showed feasibility of extended 
features by standalone benchmarks. The current results present an ideal starting point for further 
research and development and to push the concept to higher TRL levels. 

During our research and development of the components and system we successfully established the 
concept of fast and efficient privacy preserving optimization via heuristic algorithms, a very promising 
direction to achieve practically efficient systems. Based on recent scientific results we already 
developed the concept of the next generation of PE which will be able to further improve over the 
current version. Furthermore, we also identified open research challenges which we were not able to 
address anymore but can eventually be solved in future research efforts and would significantly 
improve on security, scalability, and transparency aspects. Thin the following we quickly discuss major 
gaps identified which should be closed in future work for a final product. 

Privacy engine. With our approach we achieve practical performance, however, latest research results 
show that we can even go beyond with highly optimized implementations. Furthermore, the 
integration of the optimizer into the privacy-engine and the use of particular MPC-friendly heuristics 
would lead to further speedup. Moreover, currently we are limited to a small number of MPC nodes, 
to increase security we would also prefer MPC protocols which scale better in the number of nodes, 
additionally to the input size. In summary, more research should be done on the scalability of MPC 
system now the problem-solving strategy for slot ordering is clearer defined and can be particularly 
addressed in the development of the next evolution of the system. 

Besides scalability, end-to-end verifiability turned out to be an important aspect for the platform, as it 
enables transparency through public online auditing. Although, the verifiability mechanisms were not 
integrated in the final PE, we already developed the concept and showed the feasibility for important 
steps in the SlotMachine process. More research is needed to make the full process verifiable, which 
is desirable from a user perspective and to run the application in a decentralized setting without any 
single point of trust. In summary, if we could make the full process publicly verifiable without sacrificing 
the privacy, this could tremendously increase the trustworthiness of the platform. Moreover, we 
would not need any trusted operator anymore and could run the optimization fully community based, 
which would be a completely new way to drive innovation in air traffic management. 

Finally, we think that the use of additional (side) information would lead to better heuristics and 
optimization results. If we can learn from past situations and consider this in our optimization process, 
we can additionally improve on both ends, on platform level but also on the client side. However, 
because there will be always sensitive information involved, we propose the use of privacy preserving 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 27 
 

  
 

 

machine learning to improve solution strategies and thus improve scalability and efficiency in the 
optimization step. 

 

Blockchain. The credit balance can be a sensitive information if it is updated regularly, because it can 
reveal the preferences and the private value of an AU for particular slots. While our current solution is 
to shift the immediate updates off-chain, more elaborate techniques could be applied. There are 
cryptocurrencies that include different cryptographic techniques in order to obscure amounts 
associated to a transaction of an account and thus, to keep data secret. Tendermint does not have 
such mechanisms built-in, and it is not obvious how they can be integrated. Furthermore, such 
mechanisms would have a great impact on the blockchain applications and could potentially reduce 
the possible computations. But still, combining secrecy aspects with various computations on the 
blockchain could hold a lot of potential. 

A different potential extension concerns the single actor that controls the credit balances. In the proof-
of-concept every AU has to trust the controller in providing the correct values. The privacy engine 
already can compute ZK-proofs with which the results can be verified, but secure aggregation happens 
in the dedicated wallet manager. The currently implemented possibility to verify a result manually if 
needed is already a useful feature for an AU. However, it is worth investigating if the ZK-proofs can be 
directly included in the computation of the blockchain application so that the updates of credit 
balances always have to respect the results of the trading and could not be manipulated by the 
controller or wallet manager. 

https://www.sesarju.eu/


D3.3 PRIVACYENGINE SOFTWARE COMPONENT  

 
SlotMachine!!    

 

Page I 28 
 

  
 

 

7 References 

[1] SlotMachine Consortium, „D3.2 Specification of the PrivacyEngine Component“, SlotMachine 
Report, 2022. 

[2] SlotMachine Consortium, „D2.2 System Design Document“, SlotMachine Report, 2021. 
[3] SlotMachine Consortium, „D2.1 Requirements Specification“, SlotMachine Report, 2021. 
[4] SlotMachine Consortium, „D4.2 Specification of Evolutionary Algorithms“, SlotMachine Report, 

2021. 
[5] C. G. Schuetz, E. Gringinger, N. Pilon, und T. Lorünser, „A Privacy-Preserving Marketplace for Air 

Traffic Flow Management Slot Configuration“, in 2021 IEEE/AIAA 40th Digital Avionics Systems 
Conference (DASC), 2021, S. 1–9. doi: 10.1109/DASC52595.2021.9594401. 

[6] T. Loruenser, F. Wohner, und S. Krenn, „A Verifiable Multiparty Computation Solver for the 
Assignment Problem and Applications to Air Traffic Management“. arXiv, 2022. doi: 
10.48550/ARXIV.2205.03048. 

[7] S. Krenn und T. Lorünser, „Single-Use Delegatable Signatures Based on Smart Contracts“, in ARES 
2021: The 16th International Conference on Availability, Reliability and Security, Vienna, Austria, 
August 17-20, 2021, 2021, S. 40:1—-40:7. doi: 10.1145/3465481.3469192. 

[8] T. Lorünser., F. Wohner., und S. Krenn., „A Privacy-Preserving Auction Platform with Public 
Verifiability for Smart Manufacturing“, in Proceedings of the 8th International Conference on 
Information Systems Security and Privacy - ICISSP, 2022, S. 637–647. doi: 
10.5220/0011006700003120. 

[9] C. G. Schuetz, S. Jaburek, K. Schuetz, F. Wohner, R. Karl, und E. Gringinger, „A Distributed 
Architecture for Privacy-Preserving Optimization Using Genetic Algorithms and Multi-Party 
Computation“, 2022, S. 1–18. 

[10] C. G. Schuetz, E. Gringinger, N. Pilon, und T. Lorünser, „A Privacy-Preserving Marketplace for Air 
Traffic Flow Management Slot Configuration“, in 2021 IEEE/AIAA 40th Digital Avionics Systems 
Conference (DASC), 2021, S. 1–9. doi: 10.1109/DASC52595.2021.9594401. 

[11] SlotMachine Consortium, „D4.3 SlotSwapping System“, SlotMachine Report, 2022. 
 

 

 

 

 

 

 

  

 

https://www.sesarju.eu/

