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Abstract  

In this report we present the architecture developed for the privacy engine and blockchain which are 
essential components in SlotMachine to achieve security and privacy goals. The privacy engine enables 
developer-friendly access to multiparty computation, a method to compute on encrypted data, and 
the blockchain component is used to run a permissioned distributed ledger with a dedicated 
application. The document shows implementation details about the functioning and inner workings of 
the different (sub-)systems as well as descriptions of important interfaces for both, external and 
internal ones. Additionally, we give some design rationale to support our decisions and show positive 
and negative research results achieved on the way. Moreover, we show intermediate results of 
ongoing research topics, which will not be part of the final demonstrator but will lead to way to the 
next generation of SlotMachine. 
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1 Introduction 

1.1 Purpose of the document 

In this report we present the developed architecture and implementation approach of the privacy 
engine and associated components in more detail and give design rationale for the current design. The 
privacy engine (PE) is responsible for the protection of sensitive information provided by airspace user 
(AU) in SlotMachine, and it does so by intensive use of cryptographic mechanisms. Additionally, for the 
PE to work efficiently and to establish the required trust into the platform, we combine it with 
Blockchain in a seamless way. Finally, we also present recent research results on possible extensions 
and identify future work to strengthen the trustworthiness of SlotMachine even further. In summary, 
the report shows the progress made according to the work plan and important design decisions 
relevant for the final proof-of-concept. 

1.2 Scope 

This document covers the specification of the privacy engine component which integrates with the 
platform as described in D2.2 [1]. It is designed to support security and privacy requirements as 
specified in D2.1 [2], among others, and leverages the technologies discussed in D3.1 [3]. Along with 
the PE component we also describe the use of Blockchain which complements the properties of PE and 
is essential for our approach. The detailed requirements achieved with PE and BC are also summarized 
in D2.2 and further discussed in this report. Additionally, we identify possible future extensions and 
research directions which could lead to an even more secure and decentralized platform. 

1.3 Intended readership 

This document is intended for both internal and external audiences. Internally it is mainly aimed at the 
technical team members in WP3 but also for WP4 and WP5. In WP4 the developers of the heuristic 
optimizers are relying on the functionality and performance of the PE component and in WP5 the 
partners responsible for deployment and testing find the necessary information to integrate the 
components to the prototype. However, it could be also a useful resource for other project participants 
and the public because it provides a comprehensive documentation of our approach and identifies 
future work and research directions to follow. 

1.4 Background 

The current architecture presented in this report is a culmination of many discussion and research 
work done in multiple work packages. First, it was designed to fulfil core requirements regarding 
security, privacy and transparency as described in D2.1. However, the solution has to support the 
business cases presented in D2.3 [4] and to integrate with the overall platform specified in D2.2. 
Furthermore, was designed in close cooperation to WP4 and the team working on the optimizer, which 
is documented in D4.2 [5]. Nevertheless, a lot of research on the technologies used in the PE and 
Blockchain component were done D3.1 to select the most feasible protocols and solutions and many 
different approaches for the integration with the optimizer component were already researched in the 
feasibility phase documented in D4.1 [6]. 
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1.5 Structure of the document and relation to other deliverables 

The remainder of the document is optimized to give software engineers easy access to important 
documentation of the PE component and Blockchain use, but also design decisions made. It comprises 
the following chapters. 

• Chapter 2 gives an architectural overview of the PE engine and deployment considerations. 
Additionally, it introduces the encoding service needed to pre-process sensitive PE input and 
shows how Blockchain is integrated. 

• Chapter 3 documents more inner workings and internal interfaces of the different components to 
get a better understanding of the expected behaviour and implications for their usage. 

• Chapter 4 shows the basis for the design decision made. It shows benchmarks results for 
alternative solutions which turned out to be not efficient enough but also identify interesting new 
research directions which could potentially be used to extend the current approach for improved 
security. 

• Based on the current version of the design for the privacy engine and blockchain component we 
finally conclude in chapter 5 discussing the pros and cons of the current approach. We also give 
some recommendations for future research directions and identify open problems. 
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2 Architecture Overview 

On a high level the SlotMachine platform combines tools for privacy-preserving computation on data 
based on multiparty computation (MPC) with evolutionary algorithms and blockchain technology to 
build a decentralised system that enables collaboration for optimal flight sequencing in challenging 
conditions. The overall structure is shown in Figure 1. From this approach it becomes clear how the PE 
component integrates with the rest of the system and as well as the blockchain. The PE is basically 
holding and managing the sensitive data in encrypted form and assisting the heuristic optimizer. The 
Blockchain is used to (publicly and immutably) record important data and maintain the credit wallets 
used in some market models. A more detailed specification of the SlotMachine architecture including 
relevant interfaces can be found in D2.2. 

 

Figure 1: High-Level SlotMachine Architecture with main components. 

From a software engineering perspective, the Privacy Engine (PE) encapsulates all complex 
cryptographic tasks in an easy-to-use manner from the rest of the platform and represents the 
(distributed) place where sensitive information is managed, i.e., specifically confidentiality is 
protected. Technically, the Privacy Engine is a module leveraging multiparty computation to process 
sensitive information in encrypted form only. If information is only processed in encrypted form 
highest security and privacy standards can be realized.  

Additionally, to combine both technologies — MPC and blockchain — in a fruitful way, we developed 
a dedicated blockchain component which can be easily used over a REST API. The blockchain will be 
used to store data and to manage credit wallets. 
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2.1 Privacy Engine Internal Structure 

The Privacy Engine consists of the controller and several MPC nodes. The controller presents a simple 
REST interface and controls the nodes via a basic TCP protocol. In addition, the nodes maintain 
separate TCP connections with each other, operated and controlled by the underlying MPC framework. 
Additionally, an encoding service is integrated, which enables users a simple way to encode input data 
before sending it to the controller (via other components). The encoder can also be run locally on the 
client side if needed. 

 

Figure 2: Internal structure of privacy engine with controller, MPC nodes and encoding service. 

The main functionality of the Privacy Engine is managing sensitive data. One the one hand, it enables 
the optimizer to compute the relative fitness of populations without revealing the underlying inputs, 
i.e., the margins, weights and credits set. That is, after the weight maps have been installed, the 
optimizer can then compute aggregates on them in a privacy-preserving way. On the other hand, it is 
responsible for the computation of the clearing once the final flight sequence is selected. Thirdly, the 
integrated encoding service can be used by the clients to encode and encrypt input data before sending 
it to the PE over the platform. If data the data is encoded and securely sent to the MPC nodes, it is 
guaranteed that no component of the platform has access to the sensitive input data of the AUs. The 
encoding service can be either used as part of the PE or as local standalone service, depending on the 
needs of the AUs. 

For research and debug purposes, the PE also supports a non-privacy-preserving mode, where the 
encoder component is by-passed, and the controller receives the plain-text weight-map directly. 
However, the weight-map is still secret-shared and passed on to the MPC nodes as in the fully privacy-
preserving scenario. This mode can be safely removed in production environments.  

To better understand how the PE should be used we present typical usage patterns. The main idea of 
the PE is to operate on a session basis. An optimization session belongs to a particular slot swapping 
session and is defined by the input of the AUs for the current optimization process. In the following, 
we present the privacy-preserving session for normal operation and a non-privacy preserving session 
which was mainly implemented for research and debugging purposes. Finally, we quickly present the 
idea of the encoding service and software packages used. 
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Privacy-preserving Session 

First, the weight-map — a quadratic matrix, expressed as a list of lists of integer values — is sent to the 
Encoding Service’s PUT / method that returns three separate weight-maps of the same shape (lists 
of lists of integer values) that are contained in a map/dictionary that assigns each secret-shared 
weight-map to an MPC node (hard-coded as “A”, “B”, “C”). 

Because each secret-shared weight-map is additionally encrypted with the public key of the MPC node 
for which it is intended, the Controller does not learn the contents of the original plain-text weight-
map. This map can then be given to the Controller’s PUT /sessionSecret method that passes 
the secret-shared weight-maps to the respective MPC nodes. 

If there were no errors, the Controller’s PUT /computePopulationOrder method can then 

compute for a given population of configurations the maximum encountered fitness and a sorted list 

of indices of configurations, so that the first element of this list contains the index of the configuration 

that had the highest fitness value, and the last element contains the one with lowest fitness value. 

 

Figure 3: Basic usage of PE in normal privacy preserving mode. 
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Non-privacy-preserving Session 

In a non-privacy-preserving session, the encoding step is skipped and the Controller’s PUT 

/sessionClear method takes a plain-text weight map. The secret-sharing step is done in the 

controller itself. Every step after that remains the same. This means that the Controller can use the 

MPC backend for all computations and does not need to implement separate non-privacy-preserving 

methods other than the one to install a weight-map. 

 

Figure 4: PE usage in non-privacy preserving mode, which is intended for testing. 

Encoding Service 

Technically, the encoding service secret shares the weight maps for flight prioritization. It turns a plain-
text weight map into a secret shared form suitable as input for the MPC nodes. Therefore, it transforms 
a matrix of plain-text integer weights into three separate matrices, each of the same shape as the 
original matrix and containing a share of the original plain-text value. The functionality is offered via a 
single REST method. Additionally, it can also be used by the clients locally and run as a simple stand-
alone component. 
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Implementation 

The PE implementation is built on several Python libraries already discussed in D3.1: for MPC, the MPyC 
framework is used. The REST interface and automatically generated online documentation is provided 
by FastAPI. PyInstaller is used to pre-package the code together with all necessary libraries and the 
Python interpreter, so that the components can be put into compact Docker containers based on the 
base Alpine Linux image. As a result, the containers (encoder, controller, MPC node) are only around 
13 MB in size each. 

2.2 Structure of the Blockchain System 

There are several different blockchain ecosystems. We have decided to use Tendermint, because it’s 
well suited for small up to medium sized networks and has a high transaction throughput. Every node 
which is a part of the blockchain network has to run two software components: the Tendermint client 
(Tendermint Core) and a blockchain application. These components communicate via a standardized 
interface (ABCI) while the Tendermint clients on the different nodes communicate with each other and 
form the consensus engine. The blockchain application contains the actual logic specific to the desired 
functionality. This is comparable to what is often referred to as a smart contract, with the difference 
that the code is not put on the blockchain but runs alongside. One benefit of this design is that the 
code is allowed to be of a higher size and to be computationally more intensive. At every time, at least 
more than two thirds of the nodes have to be honest and working properly. This means that if we want 
to allow for one dishonest or malfunctioning node, we need to have at least four nodes in total, which 
is exactly the number of nodes we will run for the proof-of-concept. In a production phase, ideally each 
AU would operate one blockchain node, but this is not strictly necessary. Alternatively, an AU A that 
does not want to operate a blockchain node can cooperate with another AU that runs a node and is 
willing to grant A access. However, in D3.1 it has been shown, that the solutions scale to the required 
size even if all AUs operate a Tendermint node. 
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Figure 5: Structure of Blockchain component with 4 nodes as used in first prototype. 

2.3 Deployment and Test Strategy 

In general, we aimed at the simplest possible strategy to make deployment as easy as possible. 

Therefore, a container approach was chosen for both, the privacy engine and the blockchain. 

2.3.1 Privacy Engine 

Each component (controller, MPC node, encoding service) is built as a separate Docker container. The 

encoding service can also be used independently and has no dependencies on the other services 

whatsoever and does not need any further configuration. The controller and MPC services need to 

know the fixed addresses of their connection peers. Thus, the controller must know the addresses of 

all MPC nodes and the MPC nodes need to know the addresses of each other. This is accomplished by 

using environment variables to pass information to the container processes. For simple start-up and 

testing we also provide a docker-compose configuration which deploys a minimal but fully functional 

configuration. Additionally, we provide test scripts for standalone component testing. The tests cover 

all major steps and most important failure cases and demonstrate usage scenarios for developers. 
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2.3.2 Blockchain 

There will be either one or two container images for the blockchain system, depending on whether it 

is practical to split blockchain application and Tendermint client, or not. Conceptually, it would be 

preferred to have two separate container images, but this might render the start-up procedure more 

complicated. As the prototype with blockchain will consist of four blockchain nodes, each image is 

intended to be run with four instances. Nevertheless, it will be possible to change the number of nodes 

arbitrarily with only a small configuration effort. Wherever it is possible, the capabilities of the Cosmos 

SDK will be leveraged to provide a small set of automated tests. As blockchain environments like 

Tendermint often do not provide a very sophisticated support for automated testing, we will test some 

parts of the functionality manually. 

2.4 Relation to SlotMachine Requirements 

The PE architecture was developed to satisfy the security and privacy needs for the SM platform as 
specified in D2.1. To better understand how the PE and BC design helps to address important SM 
requirements we explicitly discuss them in this section. We focus on the relevant privacy and security 
requirements as they are basically provided by the privacy engine. 

ID Description Addressed by PE and BC 

priv_1 The data provided by the AU and 
identified as sensitive shall remain 
protected. 

During the curse of the project, AU input of 
margins and priorities defined by weights 
and/or credits per slots were identified as 
sensitive. 

All this data is kept encrypted throughout the 
whole process and never handled in 
plaintext. 

priv_2 The AU flight prioritization preferences 
shall remain confidential and secured 
from competitors. 

See priv_1. 

priv_3 The AU flight prioritization preferences 
shall remain confidential and protected 
from honest-but-curious platform 
operator individuals. 

Because data is encrypted during processing 
and because the inputs are already encoded 
by the client and only sent in encrypted form 
to the MPC nodes, the platform learns 
nothing about the inputs except what it can 
infer from the PE output. 

priv_3.1 The AU flight prioritization preferences 
shall remain confidential and protected 
from Network Management Functions 
(incl. Flow Management Positions). 

See priv_1. 

priv_4 The AU flight prioritization preferences 
shall be processed in 
encrypted/encoded form only in the 
platform. 

PE uses MPC to manage and process AU input 
and never reconstructs/decodes the 
plaintext. After session is finished encrypted 
session input is deleted. 
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ID Description Addressed by PE and BC 

priv_5 The internally used representation of AU 
flight prioritization by SlotMachine shall 
be securely derived from AU input for 
each flight prioritization and flight 
considered (e.g., weights). 

In the current version of SM1 and SM3 weight 
maps are used to represent AU priorities. 
They can be automatically derived from 
margins or freely configured by AUs. In both 
cases they are computed locally on the AU 
side (client) and never sent to the platform in 
plaintext. 

priv_6 Incorrect input data from AUs shall be 
detectable, e.g., invalid margins and 
weight configurations. 

To verify that encrypted input sent to the 
platform is valid we offer two techniques. In 
a first step input is validated directly in the PE 
and an error is raised if malicious behaviour is 
detected. Additionally, we are researching 
ways to offload the task by using NIZK. With 
NIZK each AU generate a proof that their 
input is correct which can be efficiently 
verified by each MPC node. 

priv_8 Security shall be maintained against 
honest-but-curious behaviour of Privacy 
Engine service operators. 

Given by input privacy property of MPC and 
the fact that all operations are conducted on 
ciphertext. Protocols used in PE and proper 
deployment fully support privacy. 

priv_9 Security shall be maintained against 
honest-but-curious behaviour MPC 
nodes. 

Because we are able to do all computations in 
the encrypted domain and do not need any 
intermediate steps in plaintext, it is given by 
the properties of MPC protocols. 

priv_10 Security shall be maintained against 
malicious behaviour of AUs. 

By verifying AU input, we prevent malicious 
behaviour (see priv_6). Additionally, because 
the optimization does not need any 
interaction with AU clients, they cannot block 
the protocol run. 

priv_11 The credits allocated by each airline to 
its flights must remain private. 

The credits are also encrypted together with 
the weight in all supported market 
mechanisms. Also, for clearing the PE does 
not reveal any individual inputs. 

priv_12 The global balance of the credit must be 
published to all participants after a given 
time (CREDIT_PUBLISHING_INTERVAL) 
to ensure transparency and equity. 

The credit wallets are held in the blockchain 
and visible to all AU. However, for privacy 
reasons clearing for individual sessions are 
aggregated in the wallet manager and only 
pushed to BC in defined intervals. 

priv_13 The credit balance of a participant must 
be accessible for the respective 
participant at any time. 

Each AU has real-time access to its own wallet 
via the wallet manager and can access 
aggregated wallet data of all AU. The live view 
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ID Description Addressed by PE and BC 

on the wallet is created by adding the public 
balance and cached transactions. 

priv_14 The credit balances must be consistent 
and immutable for any colluding 
minority in the system, including the 
platform operator. 

Because the wallets are stored in the 
blockchain it is not possible to cheat on 
transactions. The zero-sum property of the 
token must be preserved. Additionally, we 
are researching NIZK methods to prevent the 
controller from biasing results. 

priv_15 The executed flight prioritization should 
be transparent.  

This is due to the fact that the final 
sequence is public anyway (checked with 
NMF and can be observed on runway). 
The individual AU inputs, however, are 
not revealed and zero-knowledge proof 
techniques will be used to show that they 
were correct. 

We use two mechanism to enable 
transparency. On the one hand, all major 
steps in the process will be logged in the 
blockchain, still keeping the privacy by only 
committing to sensitive data. This enables 
everyone to track progress and check 
essential properties. In the case of a dispute 
it is even possible to redo certain steps and 
verify correctness. Additionally, we are 
researching methods to support real-time 
verifiability, generation of NIZK for all steps 
involving private input thus enabling public 
verifiability (the latter part is low TRL 
research and will not be integrated in the 
final prototype). 

priv_16 The final executed flight prioritization 
should be accessible for all AUs. 

The final sequence is public and revealed to 
everyone for vetoing anyway. It is also 
recorded in the blockchain. 

priv_17 The history of flight prioritization should 
be stored in a consistent and immutable 
form. 

All relevant steps and results are stored to 
the blockchain. 

Table 1: Mapping of security and privacy requirements to PE and BC components. 

Additionally, to the core security and privacy requirements of the SlotMachine platform, the 
architecture also fulfils the specific requirements defined for the components itself. In particular, the 
PE requirements pe_1 to pe_17 were addressed with the design and a more detailed evaluation will 
be given in WP5. Also, the requirements for the MPC nodes have been taken into account (mpc_1 to 
mpc_13) and will be assessed in the validation phase of the project. Finally, because our 
implementation has been carefully benchmarked and built in a modular way, it also contributes to SM 
requirements regarding easy deployment, portability, and deployment as well as overall performance. 
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3 Components Specification 

In this section we present the main component defined in the architecture of the privacy engine and 
describe important interfaces. Because we leverage a distributed architecture and components are 
implemented as micro services, the interaction between the components is important and in the focus 
of this specification. The micro service architecture naturally supports portability and gives us the 
required freedom in deployment and good scalability. 

3.1 Privacy Engine Controller 

The PE controller is the central management component for the PE. It manages all communication with 
MPC nodes and provides an easy-to-use interface with essential API endpoints to support the heuristic 
optimizer. A detailed specification of the interface with all data objects and options is given in D2.2. 
However, for the sake of completeness we quickly recap the most important features of the interface 
to the outside world. Basically, the controller offers a REST API that consumes and produces JSON-
formatted data with the following end points: 

• GET /status: This call is intended as a simple way to check the state of the privacy engine 
and if all MPC nodes are connected and alive. 

• GET /nodes: Simple interface to list all configured MPC nodes. 

• PUT /sessionClear: Input: a new weight-map (quadratic matrix) to be installed, given as 
a plain-text list of lists of integer weights 

• PUT /sessionSecret: With this call a new weight-map is installed which basically means a 

new session initialisation. The weights are given as weight map in encoded form to the MPC 
nodes. If not successful, the lists could be of unequal length, the map does not cover all MPC 
nodes, the input is not a list of lists of integer values or the MPC nodes could not be reached. 

• PUT /computeFitnessClear: This is the clear text interface to trigger the fitness 
computation. It takes a list of indices to pick from an installed weight-map and returns a list of 
integers that are the sum of the values selected from the currently installed weight-map, i.e., it 
returns a vector fitness values. For privacy reasons this function should be used with caution and 
we generally recommend using computePopulationOrder instead. However, we keep the 
endpoint for development and testing purposes and to integrate with different kind of heuristic 
optimizers. The call returns an error if there is no weight-map installed or any of the MPC nodes 
has returned an error, if the input is not a list of integer indices or if the MPC nodes have returned 
inconsistent results. 

• PUT /computePopulationOrder: This is the main endpoint used during optimization and 

provides the best level of privacy in combinations with heuristic optimizers. As input, it takes a list 
of lists of indices to pick from an installed weight-map and outputs a MaxOrderedResponse 
object if successful. In case of error, there could be no weight map installed or the list lengths are 
inconsistent or any of the MPC nodes has returned an error. Also, if the input is not a list of lists 
of indices and the MPC nodes have returned inconsistent results, an error is raised. 
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• PUT /computeClearing: With this call the clearing is triggered. To calculate the credit 
balance for a chosen flight, sequence the optimal/selected solution input sent as index list. Based 
on the inputs and the used market mechanism a transaction matrix is computed which defines 
the individual transactions between flights for compensation in form of a ClearingResponse 
object. Currently implementation for SM1 and SM3 are foreseen to be supported. The usage of 
SM2 within the given architecture and problem modelling is under research and will eventually 
be integrated. On error there could be a weight-map missing or any of the MPC nodes has 
returned an error, alternatively the input is not a list of indices or the MPC nodes have returned 
inconsistent results. 

• MaxOrderedResponse: This data object contains a privacy preserving response of fitness 
solutions. To not leak fitness values in clear text only an ordered version of solutions in a 
population of possible configurations is held additionally to the maximum fitness corresponding 
to the solution. In particular, the maximum is the clear-text maximum fitness value encountered 
and order contains the indices of the input configurations, ordered from highest to lowest 
fitness value. 

• ClearingResponse: This object defines the response of a clearing computation in form of a 
matrix where the necessary transactions to be conducted between flights are defined. This data 
enables the platform to update the balances of the respective wallets accordingly. 

3.2 Multiparty Computation Services 

A multiparty computation service basically implements a MPC node. In a MPC protocol multiple MPC 
nodes jointly run a multiparty protocol to evaluate certain function on given inputs. Typically, 
multiparty protocols provide basic functionality and are specified to execute basic operations (gates) 
like addition or multiplication on integer values. To compute more complex tasks the function has to 
be typically decomposed into the basic gates and executed step by step (circuit). The MPC service in 
SlotMachine is based on secret sharing protocols and supports arithmetic gates on integer data types. 
This is the basis for our implementation and used to do the processing. The functions supported have 
been designed specifically to the project and are fixed, i.e., the circuit is static and public, which helps 
to achieve transparency and fairness. However, it will be easy to extend the system or add additional 
circuits in future version, but still we do not want the circuits to be loaded dynamically to prevent from 
hard to detect modifications. 

MPC nodes operate on a simple TCP-based plain-text protocol. The first line of input determines the 
operation to be performed: 

• ‘PING’: PING returns the string PING followed by a newline character 

• ‘0’:  SHUTDOWN shut down the node 

• ‘1’:  NEW SESSION the next line of input contains a whitespace-separated list of numbers to be 
used as a weight-map for subsequent computations returns the string OK followed by a newline 
character 

• ‘2’:  COMPUTE FITNESS the next line of input contains a whitespace-separated list of indices to 

be used with a previously supplied weight-map to compute a plain-text fitness value;  
returns the equivalent to the following Python expression followed by a newline character: 
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sum([map[lin*width+ind for lin, ind in enumerate(indices)]]) (width 
being the length of the weight-map divided by length of the index vector) 

• ‘3’:  COMPUTE POPULATION ORDER each remaining line of input contains a list of indices as 
above, but the sums are to be computed without revealing them; the list of sums is then to be 
sorted, revealing only the original index of the list of indices from which the respective sum was 
computed; 
returns as a single whitespace-separated list the highest sum value encountered and the ordered 
list of indices, followed by a newline character 

• ‘4’:  COMPUTE CLEARING takes a (final) sequence as input and calculates the corresponding 
clearing as transaction map, which shows how many credits have to be exchanged between 
flights. 

3.3 Encoding service 

The detailed specification of the encoding service is given in D2.2, therefore we restrict the discussion 
here on the basic functionality and usage issues to consider. The idea of the encoding service is to 
establish a very simple and user-friendly way to encode data. Moreover, with the encapsulation of the 
encoding in a sub-component of the PE it is possible to change inner workings and protocols in the PE, 
i.e., specifically exchange the MPC protocols in use, without any changes in the software client run at 
the AU. Because we rely on secret sharing based MPC protocols in SM, the currently supported 
encoding scheme is Shamir secret sharing. The AU weight maps given in plain text json format can be 
directly sent to the ES and is returned in a form understandable for the PE controller and ultimately 
for the MPC nodes. Thus, AU sending input to the system require following steps. 

• A json weight map is generated which contains one weight for each slot for a dedicated flight. 

• After sending the weight map to the encoding service a version is retuned with individual weights 
encoded in parts (called secret shares), one for each MPC node. 

• All parts destinated for a certain MPC node must then additionally be encrypted under the public 
key of the node. 

These are the step required to privately load the input to the MPC nodes preventing any party in the 
system to read data in clear. However, if the encoding service in the PE is used, an additional step is 
required. Because the encoding service would learn the plaintext values during encoding, this would 
undercut the privacy requirement for the weight map. Therefore, the values must be blinded before 
encoding and unblinded later. This can be done by adding a random value to each weight and 
subtracting them from the received sharing. Thus, with this simple trick it is even possible to use the 
encoding service in the PE without any security implications. The main difference to the previous case 
is that the encryption to the value for the MPC nodes must be done locally in the application. 

3.4 Blockchain Components 

Most of the development in the Tendermint ecosystem builds around the Cosmos SDK and most of the 
code is written in Go. This is also planned for our continued development on a blockchain application, 
which should be responsible for two tasks: storing the credit balances for every AU and storing hashes 
of additional information for being able to show the proper functioning of the system in case of doubt. 

The management of the credits is a priori a bit problematic, because AUs shouldn’t be able to learn 
too much about the preferences of the other AUs. On the other hand, they should be able to gain some 
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insight, and to be able to see what is going on, as a basic level of transparency facilitates the trust in 
the system and between the AUs. Our concept is to manage the latest credit balances in a protected 
setup beside the blockchain by the controller, as this information is too sensitive and can reveal too 
much about the bidding behavior of every participant. In a given interval, the credit balances are then 
written to the blockchain. The interval contains several optimization rounds, which prohibits that the 
preferences of an AU can be directly deduced. An AU can request its own current credit balance by the 
controller and the credit balances, as they were disclosed the last time by the controller, of all AUs by 
a Tendermint node. 

By this design, the system provides only a medium transparency, and because the trust from the AUs 
to the controller is considered to be limited, they might not be convinced in its proper operation. 
Therefore, there will be put a procedure in place, where AUs can decide together to disclose all input 
data to the optimization and control that the systems behavior has been correct in the recent past. A 
more sophisticated approach would involve ZK-proofs and is described in the next section. As the effort 
of implementing this is considered to be relatively high, it is not likely that this will be part of the 
demonstrator. 

 

 

Figure 6: Basic role of blockchain component as envisaged in SlotMachine (no final) 
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4 Design Rationale 

In this chapter we discuss positive and negative results from our research activities which built the 
basis and design rationale for our current approach. Parts of the work presented here, especially in 
MPC benchmarking and integration, were conducted in a joint effort with WP4 but are reported here 
for a coherent presentation of the topic. 

4.1 Discrete Optimization in MPC 

In this section we present our findings on fully MPC based implementation of the optimization task. 
The modelling approach developed as well as the expected problem sizes based on the requirements 
led to interesting research tasks which we tried to answer in front of the final design of the 
architecture. In particular we were investigating the feasibility for full-fledged optimization in MPC to 
get a better understanding of the problem complexity and achievable performance. 

Additionally, to the optimization process, it is also relevant to do the final clearing in the privacy engine. 
A first analysis of clearing for SM1 and SM2 showed that doing the clearing in a fully privacy preserving 
form is feasible. This is due to the fact, that the clearing has only to be done once, after the preferred 
solutions are selected, and that the operations can efficiently be implemented in MPC. Therefore, we 
do not expect any specific difficulties in MPC based clearing calculation and only focused on possible 
solutions for privacy preserving optimization. 

4.1.1 The Slot Assignment Problem 

To understand the basic functionality required for the privacy engine we analysed the basic market 
mechanism introduced in D2.3. From a modelling point of view, the variants SM1 and SM3 work on 
the basis of a weight map which defines preferences per flight and slot. The basic modelling approach 
is best shown in Figure 7. 
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Figure 7: Overview of slot allocation problem as modelled in SlotMachine. 

Only SM2 varies from this approach and it is an open research question, how SM2 could be modelled 
and optimized in the best way based on MPC. In the remainder of this part, we focus on our results 
achieved in benchmarking MPC based discrete optimization algorithms. 

Looking carefully at the optimization problem it turns out that it basically resembles a so-called 
assignment problem. With the proposed objective function as sum of weights it is a linear sum 
assignment problem (LSAP) in particular. Luckily, the LSAP is a rather old and well understood problem 
where also many efficient solution strategies have been presented in the past decades. A good 
overview on the problem can be found in [7]. However, the challenge in SlotMachine is to do privacy 
preserving optimization and to find the optimum while keeping the weight matrix protected, i.e., 
encrypted. We therefore studied the possibilities to do discrete optimization in MPC and measured 
performance for different solution strategies, which seemed most promising for a MPC setting. 

4.1.2 Solution strategies 

A problem instance of LSAP is described by a weight matrix 𝑊, where each 𝑤𝑖,𝑗 is the cost of matching 

vertex 𝑖 of the first set (a flight in our case) and vertex 𝑗 of the second set (a slot in our case). The goal 
of the optimization is to find a complete assignment of flights to slots which is of minimal cost 
according to a defined objective function, which is essential the sum of weights. Formally, let 𝑋 be a 
Boolean matrix where 𝑥𝑖𝑗 = 1 iff row 𝑖 is assigned to column 𝑗. Then the optimal assignment has cost 

min ∑ ∑ 𝑤𝑖𝑗

𝑗𝑖

𝑥𝑖𝑗  

𝑠. 𝑡. each row is assignment to at most one column, and each column to at most one row. In our analysis 
the matrix 𝑊 was assumed to be quadratic, however, it can be easily generalized to a rectangular 
problem as shown later. If the matrix has less rows (flights) than columns (sots), then more slots are 
available than flights and vice versa. The latter is currently not considered in SlotMachine, because we 
always start from a feasible solution, the current flight plan. 
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A large number of algorithms has been developed for the LSAP. A good overview of solution strategies 
is given [7]. They range from primal-dual combinatorial algorithms, to simplex-like methods, cost 
operation algorithms, forest algorithms, and relaxation approaches. The worst-case complexity of the 
best sequential algorithms for the LSAP is 𝑂(𝑛3), where 𝑛 is the size of the problem. There is a number 
of survey papers and books on algorithms. Some of the most comprehensive books dealing with the 
topics are [8]–[10]. Additionally, interesting survey papers and tutorial like introductions are presented 
in [7], [11]–[13]. 

For SlotMachine we selected one representative for each important class of algorithms and 
implemented a MPC version of it to measure the practical performance which can be achieved. The 
selected algorithms are the 

• Hungarian algorithm (aka Munkres), one of the most important candidates for the primal-dual 
strategy, 

• Simplex based solution strategy, where we leveraged linear programming to convert the 
problem into network flow formulation, 

• Auction algorithm, an algorithm working in the dual domain of "shadow prices". 
 

4.1.3 Balanced vs. Unbalanced 

In general, we distinguish between two types of the LSA problem, depending on the number of objects 
(flights) which have to be assigned to tasks (slots), i.e., the number of flights and slots in the case of 
SlotMachine. If the matching in a LSA is 1: 1 - every flight matches with exactly one slot - it is called 
balanced, and the corresponding weight matrix is quadratic with size 𝑛. It means that both parts of the 
bipartite graph have the same number of vertices when treating the problem as matching in bipartite 
graphs. 

In the unbalanced assignment problem, the number of vertices is different for each side and the larger 
part of the bipartite graph has 𝑛 vertices and the smaller part has 𝑟 < 𝑛 vertices. In that case, either 
not every object can be matched to a task or not every task is occupied. Although we mostly work with 
balanced version in our proof-of-concept we can also cope with unbalanced situations, which are 
typically cases where not all slots are occupied by flights. The case of more flights than slots is not 
relevant for our treatment, because we always start from a feasible solution. Fortunately, most of the 
algorithms tested can be directly generalized to unbalanced problem solving, they can even benefit 
from its reduced search space. 

However, even if the solver only works for balanced problems, there are methods to convert an 
unbalanced solution to a balanced one. The straightforward method is to add 𝑛 − 𝑟 new vertices to 
the smaller part and connect them to the larger part using edges of cost 0. In our case this would mean 
to add 𝑛 − 𝑟 new dummy flights with 𝑛 zero weights for the slots, which corresponds to 𝑛(𝑛 − 𝑟) new 
edges in the matching graph. Furthermore, there exists the even more efficient doubling technique  
[14] which requires at most 𝑛 + 𝑟 edges to be added. The main problem with this doubling technique 
is that there is no speed gain when 𝑟 ≪ 𝑛. 

4.1.4 MPC Aspects 

Generally speaking, the algorithms presented so far are not MPC-friendly. By their nature, they are 
mostly sequential with very little potential for vectorized operations. One such vectorizable operation 
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is testing for zero. Even though this is a costly procedure in MPC that involves random number 
generation and comparisons, it can easily be done for a whole array in parallel, because testing one 
element does not involve any other elements of the same array. Also, the result can be cached, is only 
invalidated if the value itself changes, and can easily be recomputed on demand. 

With most other operations, however, this is not possible. Take for example the minimum of a 
collection of elements. Finding it involves in the order of log n comparisons that have to be performed 
in sequence. Any change of the collection over which the minimum was computed could possibly 
change the minimum, so caching it is not viable. (When an element is added or changed, a single 
comparison is sufficient to recompute the minimum, but when an element is removed, the minimum 
has to be recomputed from scratch.) 

To get tolerable performance we must trade-off between privacy and speed and inevitably leak some 
indirect information, e.g, branches been taken. However, the final assignment will be public and is 
known to be optimal, which also means some leakage. If that is not enough, in Aly and Cleemput have 
shown how to efficiently implement graph algorithms that, like ours, reveal branching information, yet 
do not leak information by just obliviously permuting the original data [15]. 

Another problem is that every algorithm that uses some form of 𝜖-scaling needs to use floating-point 
numbers. This is not just a question of numerical stability. If the underlying numerical representation 
is not precise enough, 𝜖-scaling may terminate with a solution that is not optimal or may not even 
terminate at all. In his survey, Bertsekas [12] proposes multiplying every element of the 𝑛 ∗ 𝑛 matrix 
by (𝑛 + 1) and use only integer values (down to 1) for 𝜖 but notes that this may in practice lead to 

integer overflow because prices can then be somewhere in the order of 𝑛2max(𝑖,𝑗)∈𝐴|𝑎𝑖𝑗|. 

4.1.5 Hungarian Method 

Our first implementation is based on the Hungarian algorithm, also known as the Munkres or Kuhn-
Munkres algorithm [16]–[18]. It is one of the first polynomial-time algorithms published to solve the 
balanced assignment problem but can also be easily adapted to the unbalanced case. It is a global 
algorithm improving a matching along augmenting paths and therefore alternating paths between 
unmatched vertices. Its run-time complexity when using Fibonacci heaps is 𝑂(𝑚𝑛 + 𝑛2 log 𝑛), where 
𝑚 is a number of edges in the corresponding bipartite graph. This is currently the fastest run-time of a 
strongly polynomial algorithm for this problem. If the weights are integers, and all weights are at most 

𝐶 (where 𝐶 > 1 is some integer), then the problem can be solved in 𝑂(𝑚√𝑛log(𝑛 ⋅ 𝐶)) weakly-
polynomial time in a method called weight scaling [19]. 
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Table 2: Benchmark results for different problems sizes with a normal MPC based Munkres and a manually 
optimized version. 

 

Figure 8: Visualisation of benchmarking results over various problem sizes. 

The performance achieved in our MPC implementations are shown in Table 2. The table shows the 
duration of an optimization run in seconds depending on the problem size. It also contains information 
about the amount of costly MPC operations needed (minimum finding and zero testing). The upper 
part of the table represents results from an optimized implementation compared to the textbook 
version below. The results show a 3x improvement with our manual optimization, which is significant 
but still too slow for our application in SlotMachine, even in ideal conditions without network latency. 
The results are also visualized in Figure 8. 

4.1.6 Linear Programming 

The assignment problem is a special case of the transportation problem, which is a special case of the 
minimum cost flow problem, which in turn is a special case of a linear program1. Therefore, it is natural 
to ask what the practical performance of an MPC solver based on the simplex algorithm is. 

 

 

1 Wikipedia:HungarianAlgorithm 
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Figure 9: Modelling approaches as LP problem. Left it is shown as weight minimization in bipartite graph and 
right as flow maximization problem with virtual source (s) and sink (d) nodes. 

The assignment problem can be solved by presenting it as a linear program. This may be rather counter 
intuitive because one would more likely expect the formulation as an integer program because of the 
binary nature of a match. However, because the constraint matrix of the fractional LP is an unimodular 
matrix, the optimal solution will always take integer values with better run time compared to directly 
solving integer programming formulation. 

For convenience we will present the maximization problem, but this can be converted easily to a 
minimization. For the problem formulation we start with a bipartite graph as depicted in Figure 9 (left 
part). Each edge (𝑖, 𝑗), where 𝑖 is in 𝐴 and 𝑗 is in 𝑇, has a weight 𝑤𝑖𝑗. For each edge (𝑖, 𝑗) we have a 

variable 𝑥𝑖𝑗. The variable is 1 if the edge is contained in the matching and 0 otherwise, so we set the 

domain constraints 0 ≤ 𝑥𝑖𝑗 ≤ 1 for 𝑖, 𝑗 ∈ 𝐴, 𝑇, The total weight of the matching is ∑ 𝑤𝑖𝑗(𝑖,𝑗)∈𝐴×𝑇 𝑥𝑖𝑗, 

which is the objective function we have to maximize for a perfect matching. To guarantee that the 
variables indeed represent a perfect matching, we add constraints saying that each vertex is adjacent 
to exactly one edge in the matching. This assures the 1:1 mapping between flights and slots, i.e, ∑𝑗∈𝑇

𝑥𝑖𝑗 = 1 for 𝑖 ∈ 𝐴,  ∑ 𝑥𝑖𝑗𝑖∈𝐴 = 1 for 𝑗 ∈ 𝑇. 

All in all, we have the following LP if we formulate it as maximum-weight matching problem. 

maximize  ∑ 𝑤𝑖𝑗

(𝑖,𝑗)∈𝐴×𝑇

𝑥𝑖𝑗  

subject to  ∑ 𝑥𝑖𝑗

𝑗∈𝑇

= 1 for 𝑖 ∈ 𝐴,     ∑ 𝑥𝑖𝑗

𝑖∈𝐴

= 1 for 𝑗 ∈ 𝑇 

0 ≤ 𝑥𝑖𝑗 ≤ 1 for 𝑖, 𝑗 ∈ 𝐴, 𝑇,  

This is an integer linear program we can solve without the integrity constraints as discussed above. 
Additionally, to the maximum weight matching formulation we can represent the problem also as a 
maximum flow problem in a slightly modified graph as shown in Figure 9 (right part). By introducing a 
source vertex s and a sink t and treating the weights as upper capacity bounds, we can define a similar 
LP also delivering the same maximum matching. In the flow formulation the objective function 
maximizes the single commodity network flow under flow conservation and upper bounded edges. We 
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implemented the flow variant and report benchmark results in Table 3. From the results it can be seen, 
that this approach is even much slower than Munkres and not feasible for use in SlotMachine. 
However, is the most flexible approach when it comes to modelling and interesting in its own right. 

 

Table 3: Benchmark results form MPC based simplex solver for max flow LP. 

4.1.7 Auction Algorithm 

Additionally, to the methods presented, two variants of auction algorithms have been benchmarked. 
Auction based algorithms were identified as interesting candidate for MPC implementation, because 
they often lead to good practical performance, although worst case performance is the same as for 
Hungarian (𝑂(𝑁3)), and have potential for MPC based customization and optimizations. Auction 
algorithms were introduced in 1979 and have since then evolved as a valuable tool in network 
optimization [20]. For a detailed presentation, we refer to the survey paper [12] and the textbooks [8], 
[9]. 

We quickly recap the basic ideas of the method as presented in [20]: The auction algorithm is based 
on an economic equilibrium problem that turns out to be equivalent to the assignment problem. 
Consider our problem of matching 𝑛 flights with 𝑛 slots through a market mechanism, viewing each 
flight as an economic agent acting in his own best interest. There is also a benefit 𝑎𝑖𝑗  for matching 

flight i with slot j. Suppose that slot 𝑗 has a price 𝑝𝑗  and that the flight who receives the slot must pay 

the price 𝑝𝑗. Then, the (net) value of slot 𝑗 for flight 𝑖 is 𝑎𝑖𝑗 − 𝑝𝑗  and each flight 𝑖 would logically want 

to be assigned to a slot 𝑗𝑖 with maximal value, that is, with  

𝑎𝑖𝑗𝑖
− 𝑝𝑗𝑖

= max
𝑗=1,...,𝑛

{𝑎𝑖𝑗 − 𝑝𝑗}. 

Flight 𝑖 is considered happy if this condition holds and we will say that an assignment and a set of prices 
are at equilibrium when all persons are happy. The equilibrium assignment offers maximum total 
benefit (and thus solves the assignment problem), while the corresponding set of prices solves an 
associated dual optimization problem. This is a consequence of the celebrated duality theorem of 
linear programming. Additionally, in [21] it was shown that the original auction algorithm and the 
Goldberg&Kennedy algorithm [22] – another efficient solver - are equivalent.  

We implemented two auction algorithms in MPC and performed many experiments to understand 
their performance potential and to compare them. The experiment shows that also in the case of MPC 
the auction algorithm performs and scales better in practice than the other algorithms, which are also 
harder to implement and still have the same worst-case complexity. 
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Implementation 1: MPC version of SciPy LSAP solver. The first implementation was based on the 
implementation available in the open source SciPy module2. The core algorithm was implemented as 
MPC version and many manual optimizations were tested and compared. The best performance values 
achieve are summarized in Table 4. From there it can be seen, that even in ideal conditions with no 
network latency at all it is not possible to fulfil the performance requirements for the full problem size, 
however, the results are promising and may be relevant for other applications. 

 

Implementation 2: MPC version of ACM-ICPC solver. Our first version of a privacy preserving auction 
algorithm was based on the freely available implementation from the implementation of the Stanford 
ACM-ICPC teams3. The best achieved performance after careful manual optimization is shown in Table 
5. Compared to implementation 1, this version performs even better (about 30-40%), however, no 
further optimization potential could be identified, and the achieved performance seems almost 
optimal in the given setting, because main parallelization and caching strategies have been tried and 
compared. Therefore, also this approach does not fulfil the responsiveness necessary for SlotMachine. 

  

 

 

2 https://github.com/scipy/scipy/blob/v1.7.0/scipy/optimize/rectangular_lsap/rectangular_lsap.cpp 
3 https://github.com/jaehyunp/stanfordacm/blob/master/code/MinCostMatching.cc 

n → 
Latency (ms) ↓ 

10 20 30 40 

0 3,26 15,32 47,30 100,97 

2 5,33 25,93 81,56 177,45 

4 7,38 36,92 117,45 257,88 

6 9,50 47,96 152,30 337,19 

8 11,61 59,25 189,38 417,71 

10 13,77 70,48 225,72 499,72 

Table 4: Performance results in seconds (duration of optimization run) for given problem size n and 
increasing network latency in ms. 

 

n → 

latency (ms) ↓ 
10 20 30 40 

0 2,42 9,87 33,58 72,81 

2 3,36 14,60 52,95 118,77 

4 4,36 19,46 73,01 166,47 

6 5,36 24,34 93,25 213,98 

8 6,49 29,41 113,93 261,73 

10 7,41 34,43 134,65 310,11 

Table 5: Performance of MPC version of ACM-ICPC solver in seconds for given problem size n and 
increasing network latency in ms. 
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4.2 MPC for Heuristic Optimization 

The main results from our research activity show, that a full MPC implementation of a deterministic 
optimization algorithm for the expected problem size is not possible. This was already the hypothesis 
at the beginning of the project and has now been empirically proven. Therefore, the use of a heuristic 
optimizer was intensively studied in WP4 also considering the privacy aspects. The resulting 
architecture developed employs evolutionary algorithms and uses the MPC system as a co-processor, 
therefore achieving both, the required performance and response times but still achieving strong 
privacy for AU preferences. 

The basic concept behind the combination of the heuristic optimizer with a MPC system is to still keep 
private input in encrypted form only but relax the computational requirements for the MPC part 
compared to the full MPC optimizations. In essence, the privacy engine encapsulates MPC functionality 
and provides an interface to compute the fitness for a given set of possible flight sequences once the 
AU preferences are loaded into the system. The heuristic optimizer uses this interface to find good 
solutions which are almost optimal without access to the weights, i.e., the sensitive input set by the 
AUs. 

Although this approach is extremely fast and elegant it raises an issue regarding the privacy of the 
weights. With each query the heuristic optimizer learns something about the weights and if it is able 
to ask enough queries it would be able to recover the full weight map. As a simple example, for a 
problem size of n flights and slots, a malicious heuristic optimizer would be able to recover all n2 

individual weights after n2 random queries with high probability by solving a linear system of 
equations. Thus, privacy could even be compromised by an honest but curious platform operator, 
which we want to protect from as a minimum requirement. A naïve solution to address this would be 
to limit the number of queries the heuristic optimizer can query or to add noise to the results as 
typically done in differential privacy tools. However, as an analysis has shown, both options can 
significantly degrade the quality of the solutions the optimizer finds, thus, alternative approaches were 
needed. 

To address the leakage via fitness computations we therefore implemented additional privacy friendly 
versions. In one approach, we only reveal the order of the solutions but not the individual fitness 
except for the maximum. This solution prevents the leakage but still provides enough information for 
the heuristic optimizer to work properly. However, because this solution implies the implementation 
of a relatively resource consuming sorting algorithm in the MPC system we are also researching even 
more extreme variants, e.g., only revealing the best quarter of sequences. Finding the optimal trade-
off for different kind of optimization algorithms is still under investigation in SlotMachine, however, 
we envisage to address this problem to further improve SlotMachine even beyond what is absolutely 
required. 

4.3 Towards Public Verifiability 

Additionally, to the integration of MPC we are also researching means to enhance the trustworthiness 
of the SlotMachine platform. In the SlotMachine prototype we will record various relevant information 
during the swapping process in the blockchain such that incorrect behaviour can be detected. 
However, for sensitive information only digest information or commitments can be stored in a publicly 
accessible blockchain. This makes verification more cumbersome and requires a dedicated offline 
procedure with all parties present to fully verify the correctness of the process. Therefore, we are also 
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working on an improved protocol with public verifiability, thus enabling online auditing in real-time. 
However, this work is early research and not part of the main SlotMachine prototype. Many 
challenging research questions have still to be solved to realize such a system with practical efficiency. 
In this report we present our current approach in this directions and intermediary results achieved. 
More work will be done during the last project phase and hopefully we can show the technically 
feasibility at all, which still requires novel ways to proof the optimality in heuristic optimization or 
optimization of large combinatorial problems at all. 

The basic idea behind improved trustworthiness in the decentralized system is to integrate non-
interactive zero-knowledge proof of knowledge (NIZK) methods to make the process verifiable, albeit 
being privacy preserving. This enables on-line verifiability in contrast to the demonstrator version, 
where digests of important steps are recorded in the blockchain to prevent stakeholders from cheating 
in the protocol and to enable offline verifiability in case of a dispute. However, because this is a very 
challenging task at very low TRL and a high technical risk, we are mainly researching protocols and only 
implement basic functionality in a standalone proof-of-concept not integrated with the fully fledged 
demonstrator developed in WP5. 

 

Figure 10: High level overview of data flow with MPC and blockchain for public verifiability. 

In the following we present the current status of the developed architecture for a verifiable and 
privacy-preserving decentralized slot management platform which supports public verifiability. The 
envisaged operation and data flow for the combination of MPC with ZKP also leveraging blockchain is 
shown in Figure 10. In our scenario, we consider an optimization platform, at which AUs are registered 
for certain airports to participate in the swapping process. A dedicated optimization session is then 
started by an orchestrator —the controller in our case— and AUs are informed about opportunities to 
participate. The AUs can then input preferences for their flights in form of margins, priorities and 
optionally credits, depending on the market mechanism used. In the verifiable PoC, we are then 
leveraging multi-party computation to ensure confidentiality of individual inputs, blockchain for 
immutability of AU input and results, and zero-knowledge proofs to ensure integrity and verifiability. 
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To do so, the participating AUs also have to commit to the input sent to the MPC system in the 
blockchain and the platform will additionally attach a proof of correctness to the announced optimal 
sequence generated. If the proof of correctness is stored in the blockchain it can be verified by anybody 
given access to the blockchain, in our case also the AUs. Although the basic data flow is somehow 
straight forward, many challenges must be solved to realize such a system with practical performance. 
At the time of writing the framework was developed and first basic functionality was demonstrated, 
however, there are still many research questions ahead which have to be solved, e.g., it is unclear how 
the final proof can be efficiently computed and how credit handling can be included. Nevertheless, in 
this report we show the progress made and present the approach in more detail. 

4.3.1 Security Objectives 

In the following, we review most important security and privacy objectives to be targeted with the 
next generation architecture. Please note, this is a rather high-level treatment for a possible next 
generation version developed in a follow-up project and beyond the scope for the currently ongoing 
developments in WP5 according to requirements defined in D2.1. It basically extends certain 
properties of the current demonstrator. In the end, the new properties of the system should lead to 
increased willingness to participate. More precisely, the requirements are as follows. 

Confidentiality. Confidentiality of the AUs’ input is of utmost importance through all phases of the 
auction. In particular, the margins and weights do not only need to be protected from unauthorized 
access through competitors, but also from the platform provider, which serves as a global optimizer. 
This is because of the risk of this central entity colluding with certain producers, thereby fully 
undermining the price finding mechanisms. 

Integrity. Besides the requirement of correctness in the case of exclusively semi-honest entities it is 
necessary that the integrity of an optimization result can also be guaranteed in the case of a malicious 
operator of the platform. This even needs to hold in the case that the provider is colluding with other 
entities in the system, i.e., certain MPC node operators or AU, to ensure that no party can manipulate 
the outcome of the auction in their own interest. 

Availability. While this is often not considered in the design of cryptographic protocols, it turned out 
to be of high importance to our partners. On the one hand, users demand assurance that they will not 
miss opportunities. On the other hand, related to integrity, producers also need to be guaranteed that 
they cannot be excluded from an optimization run; that is, whenever an AU places preference for a 
flight, it shall also be guaranteed that these preferences were indeed considered. 

Anonymity and Pseudonymity. In addition to confidentiality of input, AUs may also wish to even hide 
the information whether or not they placed priorities for a given auction, as this might already reveal 
sensitive information about the current internal status. Depending on the specific business model of 
the marketplace, this requirement needs to be balanced against the platform provider interest, which 
sometimes need the information. 

Rank Fairness. Another important aspect for the clients was fairness in terms of fair conditions. This 
can also be interpreted as an open and transparent way of optimizing in a transparent and unbiased 
way. In particular, the objective function used to rank different swapping solutions must be publicly 
know. 
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Transparency. Finally, transparency requires that all participants in the system are able to trace 
progress and activities on a high level. The users may also be interested in historical data to further 
optimize their planning activities. However, all this functionality needs to be achieved without 
compromising any of the previous goals, especially those related to confidentiality and privacy. 

These requirements are also in line with previous work regarding security and privacy of auctions found 
in the literature and discussed in D3.1; i.e., bid privacy, posterior privacy, bid binding, public verifiable 
correctness, financial fairness, non-Interactivity. 

4.3.2 Optimization and Clearing Mechanism 

Different market mechanisms have been proposed in D2.3 and various optimization approaches 
evaluated in D4.1. In summary many different combinations of market solutions and optimization 
strategies and for practical application more than a single one has to be supported by a generic 
framework. In that sense, it is essential to have a very flexible mechanism for ranking solutions when 
optimizing and price clearing options. 

From a MPC point of view the proposed mechanisms do not introduce a specific challenge and can be 
implemented efficiently, however, regarding privacy and public verifiability many challenges arise 
which are not fully solved. Because the clearing is also not fully specified at the time of writing, we 
leave the further treatment for the final project phase but consider already known prerequisites 
already in the theoretical treatment of the framework. 

4.3.3 Framework 

The proposed framework is designed to address the security objectives defined in D2.1, especially 
bringing together typically contradicting goals of privacy and verifiability in a single solution. The 
framework is designed as a decentralized architecture which incorporates edge computing capabilities 
managed by users connected to a central cloud infrastructure where the platform is hosted. The 
system design is following data minimization principles and data is not uploaded if it can be processed 
locally. Additionally, using secure multiparty computation the platform itself is operated in a way that 
the provider does not learn sensitive data, thereby minimizing the necessary trust assumptions as even 
certain malicious behaviour would be detected. This is achieved by making all steps in the data flow 
verifiable. To do so, publicly verifiable zero-knowledge proofs of knowledge are generated for all 
computations. To trace all interactions and proofs we use a distributed ledger which serves as a trust 
anchor and immutable append-only data base. 

The system enables end-to-end verifiable computations in a flexible manner. On one hand, it enables 
the edge to participate and pre-process data, therefore minimizing the amount of data which need to 
be uploaded to the platform. On the other hand, it additionally achieves security for the processing in 
the cloud combining inputs from different parties. The framework supports typical application patterns 
which are found in many other application scenarios but are specifically relevant for SlotMachine. 
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4.3.4 Data Flow 

In the following we detail the data flow in our platform. To ease understanding, Figure 11 provides a 
high-level overview, where we omit setup steps for the sake of clarity. 

 

Figure 11: Session overview for an extended slot swapping session with public verifiability as currently under 
investigation in SlotMachine. 
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4.3.4.1 Setup phase. 

The following setup steps are necessary to operate the system. 

• On the one hand, 𝗭𝗞𝗦𝗲𝘁𝘂𝗽 is used to generate the common reference string (CRS) needed for the 
NIZKs. On giving as input the security parameter and a circuit, this algorithm outputs the CRS which 
is assumed to be an implicit input to all further algorithms and parties. It is important to note that 
the system shall be designed in a way that this step is only needed once and does not need to be 
invoked again if different ranking mechanisms are used, as they are all supported by the specifically 
designed circuit with built-in flexibility. In practice this setup algorithm can be run in dedicated 
setup ceremony, including, e.g., secure hardware elements or dedicated MPC-based ceremonies. 

• On the other hand, 𝗥𝗲𝗴𝗨𝘀𝗲𝗿 is a protocol which is run by the user and the platform to register with 
the platform. It is used to generate necessary identities and credentials to authenticate the user 
and set up the necessary permissions on the ledger. 

4.3.4.2 Operative phase. 

After the setup is complete the following steps are conducted in the protocol for a particular auction. 

• 𝗦𝗲𝘀𝘀𝗶𝗼𝗻𝗜𝗻𝗶𝘁. An orchestrator sends a swapping session request with relevant parameters to all 
parties and stores them in the blockchain. 

• 𝗠𝗮𝘁𝗰𝗵. Based on the session information received, the AUs check if they are eligible for 
participation and if they have an interest in prioritizing. If an AU decides to participate, they 
calculate margins, priorities, and credits they want to set. Additionally, the data is pre-processed to 
generate the weight map which is ultimately used within the MPC, i.e., the privacy engine. If an AU 
does not want to participate, the local process is aborted. 

• 𝗖𝗼𝗺𝗜𝗻𝗽𝘂𝘁. Cryptographic commitments for the inputs together with the computed weight map 
are generated. Additionally, a NIZK showing the correctness of the weight map computation based 
on the original margins and priorities is generated. Finally, a proof showing that the weight map 
fulfils policies for weight distribution according to session parameters could be also computed if 
required. The commitments together with corresponding proofs are then stored in the blockchain. 

• 𝗜𝗻𝗽𝘂𝘁. In this step the AU sends their margin data together pre-processed weight distribution to 
the MPC system in a secret-shared fashion. 

• 𝗖𝗸𝗜𝗻𝗽𝘂𝘁. The MPC system retrieves the corresponding commitments and proofs from the 
blockchain and verifies them in the encrypted domain. This is done by recomputing the 
commitments on the shares (for margins and weight maps) at each node and comparing the 
reconstructed commitments with the plaintext ones. Additionally, each node verifies the proof for 
the local pre-processing at each AU individually. If either of the checks fails, the system complains 
about the AU. 

• 𝗖𝗼𝗺𝗽𝘂𝘁𝗲. The MPC system runs the optimization task and calculates the rankings for different 
swapping scenarios based on the inputs it is holding. This can be by either running a full 
deterministic optimization, if there is enough time to do the computation on encrypted data, or by 
assisting the heuristic optimizer if faster execution times are needed, as is the case in SlotMachine. 
The final overall score for the (almost) optimal solution may be published if needed or sent to the 
heuristic optimizer in the platform. 
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• 𝗭𝗞𝗣𝗿𝗼𝗼𝗳. The MPC system generates a NIZK for the (almost) optimal solution, proving that it is the 
best ranked result according to the predefined ranking function and the optimization mechanism. 
It does so by each node computing the proof on its share of the result. 

• 𝗥𝗲𝘃𝗲𝗮𝗹. To reveal the result in a verifiable form, the optimal swap is revealed together with a 
commitment on the optimal score and a NIZK showing the score is correct. Furthermore, an 
additional proof showing the selected swap is also (almost) optimal should be produced. This is 
currently the main challenge and under development. The data is recorded in the blockchain and 
finalizes a particular auction. 

• 𝗖𝗹𝗲𝗮𝗿𝗶𝗻𝗴. Optionally, the clearing together with NIZK shall be produced and sent to the platform 
where it is reconstructed. Also, the privacy preserving clearing process is not fully understood and 
under research at the time of writing. However, we see a need for a credential management 
component in the platform which manages per session clearings and only pushes aggregated 
clearings to the blockchain to preserve privacy of the AU inputs. 

There are many variations possible in practice, but this will only result in subtle changes, e.g., if the 
optimal score could be made public. 

4.3.5 Protocols 

Different protocols have been used, extended, and integrated to achieve all desired properties for our 
framework. At the core we combine multiparty computation with zero-knowledge proofs of 
knowledge to achieve confidentiality and public verifiability that the same time. Regarding MPC we do 
not rely on any specific protocol but only require a method which is based on secret sharing. However, 
because we aim at public verifiability the correctness of the computation is going to hold even if all 
nodes are corrupt. Therefore, depending on the individual assumptions made for the MPC 
deployment, it can be sufficient to rely on passively secure protocols for input privacy. 

To achieve verifiability, the system is based on adaptive zk-SNARKs as introduced in [23]. Working with 
commitments to track different steps in the process is essential to guarantee privacy of sensitive data. 
However, the protocol is not guaranteeing any authenticity which is essential to track the flow from 
end to end. Therefore, we leverage ideas from ADSNARK [24] and use signatures on the commitments 
to assure the authenticity of the data right from the source. In our use cases both can be used, standard 
signatures but also group signatures, if a certain degree of anonymity is still required, e.g., if it should 
not be visible which department of a larger organization is managing certain flights. Additionally, by 
simply signing the commitments we achieve more flexibility because the commitments support batch 
operation on data vectors. 

Finally, an important goal is to reduce the number of times the CRS setup procedures have to be 
executed. Ideally, it has only to be done once when initializing the platform and can then be reused for 
all subsequent auctions. 

For our use case a hybrid approach is aspired. On the one hand we intend to use the idea of 
subroutines, i.e., predefined subroutines which are defined at setup time but can be connected during 
proof generation by means of intermediate commitments, to establish the required circuit. This 
concept is very flexible with only little overhead, i.e., the additional commitments increase the proof 
size and verification time for each subroutine defined. To enable even more freedom in the 
configuration of ranking algorithms we research possibilities to integrate universal circuits based on 
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ideas from MIRAGE [25]. Altogether, we intend to use circuitry which comprises both, static elements 
and freely re-configurable components to get the best of both worlds. To that end, this approach is 
somehow similar to partially reconfigurable hardware. 

4.3.6 Security 

In the following we will informally discuss the achieved security goals; a more formal treatment is 
planned as future work. Moreover, we also give some design rationale and explain several architectural 
decisions. 

Confidentiality. The privacy of sensitive information is protected in our framework by two main 
primitives. On the one hand, MPC is used to compute the winner of the auction in a privacy preserving 
way, as sensitive data is protected by the input privacy provided by MPC. 

On the other hand, to enable transparency we are recording inputs at different stages in the 
blockchain. To achieve confidentiality there we use commitments which are also hiding input. Given 
that sensitive inputs are never handled in cleartext in the system we achieve strong cryptographic 
protection, which also results in the discussed properties of bid privacy and posterior privacy. 

In our marketplace, we even apply a decentralized input pre-processing. In the current approach the 
AUs can directly pre-process the margins into a weight distribution for each flight. Through this 
approach they are more flexible in fine-tuning the weights within a given policy defined for correct 
input. Alternatively, the PE would have to generate the weight distribution from margins given by AUs, 
which would cause more load on the PE and gives less flexibility to AUs. 

Integrity and correctness. In essence, the basic idea of the framework is to preserve the integrity and 
authenticity of data in the system and to prove the correctness of each computation in between. We 
use commitments on each step of the process to track progress in the system and assure authenticity 
by signing them during upload into the blockchain. The blockchain itself serves as immutable public 
database or bulletin board. Due to the hiding property of the commitments, privacy of input data is 
still preserved, while guaranteeing that producers are bound to their bids. The framework is based on 
the extractable commitments presented in [23]. In the original work these commitments were used 
with a dedicated key to distinguish between input from different parties, but this key is produced in 
the initial setup phase and must be distributed to parties, which opens up many attack vectors in 
practical implementations. We rely on locally generated private keys, which never leave the local area 
and are registered with the platform or the blockchain. Alternatively, the use of group signatures 
would allow for even more flexibility in the management of edge components without sacrificing the 
security. 

After the optimization session is initiated and all AUs recorded the input in the blockchain, the MPC 
based optimization is started. Contrary to a normal MPC model where inputs are sent to the system 
and the result is sent back to the parties, we employ an augmented view. The input is comprised of 
the private bid, the private matching score as well as the data also recorded on the blockchain, i.e., the 
commitments on initial machine parameters and the matching score accompanied by a NIZK, thereby 
guaranteeing confidentiality while still binding bidders to all input values. Finally, the MPC system not 
only outputs the winning bid, but also a NIZK proving its optimality, thereby guaranteeing the integrity 
of the final result. 
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It is worth noting that the performed local pre-processing of weight distribution introduces another 
problem with the integrity of data: It has to be assured that the weights were computed correctly and 
fulfil the policy for correct input. Therefore, the AUs are required to generate a proof on the weights 
set when they are sent to the MPC system. We do so by forcing the AUs to commit not only to the 
margins but also to the weight distribution for the flights and additionally to generate a NIZK showing 
the correctness of the weight distribution. All data is then uploaded to the blockchain before sending 
the input to the MPC system. 

It is important to note, with this approach we are extending the security model of the platform beyond 
that of MPC. As the correctness of the computation becomes publicly verifiable by means of NIZKs, the 
integrity of the computation can even be assured if all MPC nodes maliciously deviate from the 
protocol specification. Even more, in our setting malicious behaviour can be attributed to the right 
stakeholder, i.e., it is not possible to blame the platform for malicious input from bidders or vice versa. 
This is achieved by letting the MPC system check all inputs for consistency with the information in the 
blockchain before it computes a result. Only if all inputs are consistent with the stored commitments 
and the matching score is computed correctly, the MPC system will incorporate the bid in the auction, 
and only then it will be able to compute a proof for the winning bid. 

As a result, the full data flow is accompanied with NIZKs and every participant can verify the 
correctness of the optimization session from end-to-end. Even if privacy is compromised by an 
adversary which compromises enough MPC nodes to recover the inputs, he will still not be able to 
influence the outcome of the optimization process. Depending on the use case, it would also be 
possible to leverage very efficient MPC protocols from a user point of view, because the correctness 
property of the auction could be directly verified. 

Availability. The availability of the system is assured by the blockchain component which provides the 
properties to serve as robust and immutable public append-only log. Depending on the deployment of 
the MPC system, also robustness properties such as fairness or guaranteed output delivery are 
achieved. Additionally, as the system is non-interactive, client-side computations cannot be 
interrupted or blocked by individual participants, resulting in a highly available decentralized 
architecture. Although the platform server is currently needed to run auctions it would also be possible 
to remove this single point of failure, but this scenario is not relevant for SlotMachine. 

Anonymity and Pseudonymity. For the given use case it is not desired to build a completely open and 
permissionless infrastructure. The AUs (clients) in this system are part of an ecosystem which requires 
some level of assurance to operate and have no direct need for anonymity. However, some AUs might 
not want to leak whether or not they participated in a given session. This leakage can be easily avoided 
by always participating in respective sessions with ∞ weights. 

Fairness. In our prototype, the swap session information is public and could thus be also put into the 
blockchain, which also serves as a broadcast channel in this step. Therefore, all participants are reliably 
informed about new possibilities as well as the detailed parameters and criteria for the optimization 
algorithm used. 

Transparency. By logging every step to the blockchain in a privacy-preserving way and also proving 
that all computations are correct, we achieve public verifiability. Every user of the system will thus be 
able to verify all auctions based on the public data stored in the blockchain without compromising the 
privacy of individual inputs, thereby achieving the requirement of transparency. 
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4.4 Credit Balances with Zero-Knowledge Proofs 

It would be desirable, that every party can check the correct behaviour of the system. For the credit 
balances this means that an AU can only spend credits it possesses and furthermore results in a correct 
change of the balances. It is relatively hard to respect this property in an implementation without 
reducing the desired level of privacy. An approach to achieve this is by adding ZK-proofs and adapting 
the interactions between the participants slightly. 

Additional to sending the input via the controller to the Privacy Engine, an AU also commits to the 
input on the blockchain. The PE then calculates a ZK-proof in addition to the clearing and sends it also 
to the blockchain. The clearing is forwarded to the controller, which updates all the balances privately 
and sends each AU its current balance with an ZK-proof. With this procedure, the AUs are able to verify 
that the credit balances are calculated correctly. 

This extension to the system won’t be fully implemented as part of this project as the expected effort 
would be too high. Nevertheless, the approach will be taken in consideration while describing and 
building the components. This way, the system will be designed in an extensible manner and the ZK-
proofs can be added on top at a later time. It could also be worth investigating if the wallet 
management can be lifted to the PE, so that the balances can even be kept secret from the controller. 
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5 Summary and Conclusion 

In this report we present the architecture developed for the privacy engine and blockchain which are 
essential components in SlotMachine to achieve security and privacy goals. The privacy engine enables 
developer-friendly access to multiparty computation, a method to compute on encrypted data. 
Additionally, the blockchain component is used to run a permissioned distributed ledger with a 
dedicated blockchain application (smart contract). The blockchain serves as an immutable public 
storage and computation system which is accessible to all stakeholders. 

The document provides implementation details about the functioning and inner workings of the 
different (sub-)systems as well as descriptions of important interfaces for both, external and internal 
ones. Additionally, we give some design rationale to support our decisions and show positive and 
negative research results achieved on the way. Finally, we present the status of ongoing research 
activities for improved functionality. In summary, we could verify our research hypothesis and confirm 
our decision for the use of a dedicated heuristic optimizer, because standalone MPC based 
implementation are without reach for SlotMachine. We also identified future research topics regarding 
transparency and verifiability which are currently not mature enough to be integrated with the 
SlotMachine prototype but could lead the way for future developments for the privacy engine beyond 
the current project. 

In a next step, privacy engine and blockchain components will be implemented according to this 
specification and integrated with the overall platform as planned in D2.2. In parallel, more research on 
the clearing process will be done to enable seamless integration for token support with the current 
architecture. Furthermore, research on open topics (e.g., public verifiability, SM2 integration) will 
continue merely on a theoretical basis and optionally with exploratory standalone proof-of-concept 
implementations. 
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