

D2.2 System Design
Document

 Deliverable ID: D2.2

 Dissemination Level: PU

 Project Acronym: SlotMachine

 Grant: 890456
 Call: H2020-SESAR-2019-2
 Topic: SESAR-ER4-27-2019 Future ATM Architecture
 Consortium Coordinator: Frequentis
 Edition Date: 23 December 2021
 Edition: 01.00.01
 Template Edition: 02.00.03

EXPLORATORY RESEARCH

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 2

SlotMachine
A PRIVACY-PRESERVING MARKETPLACE FOR SLOT MANAGEMENT

This Deliverable is part of a project that has received funding from the SESAR Joint Undertaking under
grant agreement No 890456 under European Union’s Horizon 2020 research and innovation
programme.

Abstract

This document provides the system design related to SESAR ER project SlotMachine. In particular, this
deliverable describes the architecture and main components of the SlotMachine system as well as the
interfaces for the components and the interaction between components. The SlotMachine system is
based on a service-oriented architecture, each component running in its own container and providing
a REST interface. The system design proposed in this document serves as the basis for the
implementation but will be subject to change during the development process. Some details require
further research and experimentation before a final decision regarding the design options can be
made. It is recommended to read this deliverable after D2.3 – Business Concepts and D2.1 –
Requirements Specification.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 3

Table of Contents

 Introduction ... 5

 Purpose of the document... 5

 Intended readership .. 5

 Background ... 5

 Structure of the document and relation to other deliverables ... 5

 Overview ... 7

 Component Overview .. 8

 Demonstrator Iterations .. 11

 Functional Components .. 12

 Airspace User (AU) ... 12

 Network Management Function (NMF) .. 12

 Controller .. 14

 Heuristic Optimizer .. 14

 Airport .. 15

 Dashboard ... 15

 Privacy Engine ... 17

 MPC Nodes .. 18

 Blockchain ... 19

 Credit Wallets and Wallet Management ... 20

 Interfaces ... 21

 Controller .. 21

 Heuristic Optimizer .. 52

 Network Management Function ... 66

 Airspace User .. 72
4.4.1 REST Interface ... 72
4.4.2 WebSocket Interface ... 91

 Dashboard ... 93

 Privacy Engine and MPC Nodes .. 93

 Blockchain, Credit Wallets, and Wallet Management .. 99
4.7.1 Blockchain ... 100
4.7.2 Credit Wallets and Wallet Management ... 102

 Sequence Diagrams ... 103

 Controller and Network Management Function ... 103

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 4

 Controller and Airspace User... 103

 Controller, Heuristic Optimizer, Privacy Engine, and MPC Nodes 106

 Controller, Wallet Management and Blockchain .. 107

 Experimental Testing .. 109

 Test Setup .. 109

 Test Cases .. 109
6.2.1 Non-privacy-preserving Demonstrator ... 109
6.2.2 Privacy-preserving Demonstrator ... 110
6.2.3 Privacy-preserving Demonstrator with Credit Handling ... 112

 Test Runs.. 114

 Conclusions ... 116

 References .. 117

Appendix A Terms of Glossary... 118

List of Figures
Figure 1. Conceptual representation of the flow of a SlotMachine optimization run 7

Figure 2. Main components and interfaces involved in the flight prioritization process 10

Figure 3. FligthListByAerodromeRequest class diagram [7] .. 13

Figure 4. FligthListByAerodromeReply class diagram [7] .. 13

Figure 5. Overview of the data flow to the dashboard ... 16

Figure 6. Interaction between Privacy Engine and Heuristic Optimizer as well as MPC nodes 17

Figure 7. Interaction between Controller and Network Management Functions 103

Figure 8. Participation of AU in an optimization run ... 105

Figure 9. Retrieval of flight list by AU after an optimization run .. 106

Figure 10. Interaction between Controller, Heuristic Optimizer, Privacy Engine, and MPC nodes when
conducting an optimization run .. 107

Figure 11. Interaction between Wallet Management, Privacy Engine, Wallets, and Blockchain 108

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 5

 Introduction

 Purpose of the document

The purpose of this document is to derive a system design from the requirements specified in D2.1 –
Requirements Specification.

This document covers the overall architecture and detailed description of functional components and
their interworking. Additionally, this document describes how to validate the proposed design through
end-to-end tests based on scenarios from D2.1 – Requirements Specification.

The System Design addresses the “how” of SlotMachine and proposes various implementation options
that are used for subsequent evaluation. The proposed design, however, may be adapted in the course
of the agile development method during demonstrator implementation. Furthermore, some design
choices are still subject to change based on experimentation when the components have been
implemented as a first version.

 Intended readership

The target group for this document is the SlotMachine project team with a special focus on R&D related
topics. This document also provides input for the Advisory Board to describe detailed specification
assets, and, beyond the project, product managers and system architects can use the content of this
document as a basis for implementation and further development.

 Background

This document took references from the TS (Technical Specification) document structure and provides
a comprehensive overview about design and verification of the planned solution.

 Structure of the document and relation to other deliverables

The general structure of this document is as follows.

• Chapter 1 (this section): It provides a general idea of the entire document. It includes the
purpose, readership, inputs from other projects, component purpose and high-level overview
and acronyms used in the document,

• Chapter 2 provides an overview of the SlotMachine system at a conceptual level,

• Chapter 3 gives describes the SlotMachine system’s main components,

• Chapter 4 specifies the interfaces of the components,

• Chapter 5 provides sequence diagrams that explain the interactions between the components,

• Chapter 6 documents the approach for implementation and verifying project progress,

• Chapter 7 concludes this document,

• Chapter 8 lists all referenced documents,

• Appendix A lists and defines selected terms used in the document.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 6

This document relates to the other deliverables of the SlotMachine project as follows.

• D2.1 – Requirements Specification [1]: The requirements are the foundation for the proposed
design in this document; the design refers to the requirements in D2.1.

• D2.3 – Business Concepts [2]: More details on operational background, deployment options,
and market mechanisms can be found in D3.2.

• D3.2 – Specification of the PrivacyEngine component [3]: The Privacy Engine and related
components (MPC Nodes and Credit Handling) are described in further detail in D3.2.

• D4.2 – Specification of the Evolutionary Algorithm [4]: The Heuristic Optimizer is described in
further detail in D4.2.

• D5.1 – SlotMachine Platform Demonstrator [5]: The platform demonstrator will integrate the
individual components for evaluation.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 7

 Overview

In case of reduced capacity of the air traffic network, the Network Manager (NM) initiates a regulation,
which typically causes flight delay. In case of a regulation, the conventional approach to re-planning
the departure times of flights is to follow the principle of “first-planned, first-served”. For airspace
users, however, different flights may have different priorities due to the individual cost structures of
different flights. The SlotMachine system will allow airspace users to submit preferences regarding the
departure times of individual flights, which are then considered during an optimization session that
aims to find a globally optimal flight list. We refer to D2.3 – Business Concepts [2] for more information
on the operational and economic background.

SlotMachineNetwork Manager Airspace User 1 .. n /

Airport

(3) Elicit
Preferences

FPFS Flight List +
Public Flight Data

(1) Announce
Regulation

(5) Review
Proposed Flight

Lists

(7) Check feasibility of
proposed flight lists

Proposed
Flight Lists

(2) Announce
Optimization

Run

FPFS Flight List +
Public Flight Data

Optimization Run

(4) Evolutionary Optimization

(4a) Generate
Flight Lists

 Flight Lists

(4b) Evaluate
Flight Lists

Fitness of
Flight Lists

Preferences
(per Flight)

Candidate
Flight Lists

Rejected
Flight Lists

(8) Update
Credit Wallets

Accepted
Flight List

(6) Propose Flight
Lists to NM

Credit
Transfers

Non-confidential

data

Confidential

data

Non-privacy-

preserving activity

Privacy-

preserving activity output input

Figure 1. Conceptual representation of the flow of a SlotMachine optimization run

From a conceptual perspective, the flow of a SlotMachine optimization run is as follows (Figure 1).
Once the network manager announces a regulation, the SlotMachine system retrieves the new first-
planned first-served (FPFS) flight list and any non-confidential data related to the flights affected by
the regulation. The SlotMachine system then initiates an optimization run for the regulation. The
SlotMachine system may conduct multiple optimization runs per regulation, so the optimization run
may only involve a subset of the flights affected by the regulation. The airspace users (and possibly the
airport) are notified about the regulation and receive a flight list for the time segment that the
optimization run covers. The airspace users (and possibly the airport) then elicit preferences regarding
the prioritization of the flights that are affected by the regulation. The preferences are confidential
and therefore submitted in encrypted form; the activities processing the preferences are privacy-
preserving. Following the submission of the preferences by the airspace users, the SlotMachine system
conducts an evolutionary optimization run to find optimized candidate flight lists. The optimization run
is an evolutionary process that consists of finding a population of flight lists and evaluating the flight

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 8

lists. Evaluation of the flight lists in a population of flight lists is a privacy-preserving activity, employing
(secure) multiparty computation to compute fitness values for the proposed flight lists. After the
evolutionary optimization run has finished, the best candidate flight lists are submitted to the airspace
users and the airport for review. The airspace users and airport may reject individual solutions. The
acceptable candidate flight lists are proposed to the Network Manager. The Network Manager checks
the proposed flight lists’ feasibility, chooses a flight list, and communicates the accepted flight list back
to the SlotMachine system, which relays the accepted flight list back to airspace users and airport
before updating the credit wallets if a credit-based market mechanism is used (see D2.3 – Business
Concepts [2]).

 Component Overview

Figure 2 gives an overview of the SlotMachine system’s main components. The individual components
will be implemented as services that run in separate containers. Microservice design is used for best
portability, allowing for the components to be easily run in cloud environments.

The high-level data flow through the different components is as follows. Note that due to space
considerations, for the sake of comprehensibility, not all the proposed interfaces and components are
represented in Figure 2. We refer to Chapter 3 for more details on the components, Chapter 4 for a
more detailed description of the interfaces, and Chapter 5 for sequence diagrams of the interaction
between the components.

1. The main component is the Controller, which manages the optimization run. The Controller
regularly checks with the Network Management Function (NMF) which regulations have been
issued and, if a regulation has indeed been issued, retrieves the list of flights affected by the
regulation. The NMF is the component that realizes the functionality that is currently assumed
by the Network Manager.

2. The Controller then notifies the airspace users and the airport of a regulation.

3. The Airspace User component consists, on the one hand, of a web-based user interface (AU
web app) that allows representatives to login and submit preferences regarding an
optimization run. On the other hand, the Airspace User component consists of a REST interface
for interaction with the Controller (AU REST). The Controller submits notifications of
regulations only to AU components that registered for notifications of a certain regulation type
(ARRIVAL, DEPARTURE or EN ROUTE) on a specific airport (not shown in Figure 2). Note that
an operative system would also have to provide an Airport component, the development of
which will be derived from the AU component.

4. After receiving the notification about a regulation, the AU web app loads the flight list for the
airspace user and displays the flights in a list in the user interface (UI). The UI also shows the
cut-off time, i.e., the time when the next optimization run is scheduled; up to the cut-off time
the AU is able to push preferences regarding the optimization of the flight list.

5. The airspace user representative can enter for each flight a time wished, a time not before,
and a time not after, which are also referred to as margins, as well as a priority.

6. The AU REST component translates the margins and the priority into a set of weights/utilities
(see also D2.3 – Business Concepts [2]) following a configurable, airline-specific ruleset. The
weights are encrypted for privacy reasons and forwarded to the Controller.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 9

7. After reaching the cut-off time, the Controller forwards the preferences to the Privacy Engine
where the solutions to the flight prioritization problem (optimized flight lists) are evaluated.

8. The Heuristic Optimizer component looks for better solutions to the flight prioritization
problem in an iterative way, submitting the solutions found in each iteration step to the Privacy
Engine for evaluation.

9. The Privacy Engine does not decrypt the submitted preferences of the airspace users but
employs multiple MPC nodes, which are run independently from the SlotMachine system, e.g.,
by airspace users themselves, to evaluate the flight lists found by the Heuristic Optimizer.

10. When the optimization run has concluded, the Controller forwards a set of optimized flight
lists to the to the Airspace User component. The solutions are presented on the AU web app
for evaluation.

11. The airspace user has the possibility to reject one or more solutions.

12. The acceptable flight lists, i.e., those that are not rejected by anyone, are submitted to the
NMF, which takes the decision about which of the proposed solutions is accepted.

13. The accepted solution will be communicated to the Controller by the NMF. The Controller
notifies the AU component (and the Airport component) of the new flight list.

14. The Controller, together with a Credit Management component and the Privacy Engine
updates the credit wallets. Transactions are also recorded in a blockchain.

In this project, we implement the different components as services. A service-oriented architecture is
common-place in systems development, particularly in air traffic management (cf. System Wide
Information Management). Most components will be implemented using a microservice architecture
based on the RESTful web service paradigm [6]. The advantage of such an architecture is that it can be
easily run in a cloud environment and allows for horizontal scaling through parallelization and
distributed computation (see requirements port_1–3 and rel_1 in D2.1 [1]).

D2.3 – Business Concepts [2] proposes different market mechanisms. The mechanism SM1 is based on
utilities expressed in real-world currency, e.g., euros. In SM1, no credit management is necessary but
other clearing options would have to be investigated. The mechanism SM3 replaces real-world
currency with credits. The mechanism SM2 is based on combinatorial auctions and also employs
credits. In both cases, however, different interfaces would be required.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 10

Figure 2. Main components and interfaces involved in the flight prioritization process

 erform udit

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 11

 Demonstrator Iterations

During the lifetime of the project a demonstrator to demonstrate, evaluate, and compare certain
functions will be developed according to D2.3 Implementation Use Case” using an iterative approach,
which means functionalities and components will be added step by step. The identified requirements
will guide the implementation of different demonstrators which are developed iteratively. Ideally the
final iteration should satisfy all identified requirements. However, part of the project is to find out
whether the requirements can be satisfied by a SlotMachine implementation or whether they are even
necessary. In particular, we will develop the following iterations of the demonstrator:

1. The first “non-privacy-preserving” version (planned for October 2021) of the demonstrator
will cover initial demonstration of submitting preferences by AUs (via the AUs web app through
the Controller to the Optimizer) and optimizing a flight list to discuss first results. This
demonstrator involves basic implementation of following components:

o AU web app and AU REST

o Controller

o Network Management Function (NMF)

o Heuristic Optimizer

o Dashboard

A variant of the non-privacy-preserving demonstrator will use the Privacy Engine component
and MPC Nodes using a non-privacy-preserving configuration of those components.

2. In the 2nd iteration (planned for February 2022) of the demonstrator, “privacy-preserving”
mechanisms will be added through the Privacy Engine (incl. MPC nodes) and end-to-end
encryption between AU clients and MPC nodes; a Dashboard provides an overview and
aggregated insights over the optimizations performed by the components. This demonstrator
involves basic implementation of following components:

o AU web app and AU REST

o Controller

o NMF

o Heuristic Optimizer

o Privacy Engine

o MPC Nodes

o Dashboard

3. In the 3rd version (planned for May 2022), secure, and traceable credit handling will be
provided through blockchain technology to allow greater flexibility and more options for
airlines participating in the marketplace. In this state all mentioned components will be
involved.

4. Afterwards the demonstrator is iteratively improved based on feedback from Advisory Boards (2nd
Advisory Board in March 2022, 3rd Advisory Board in Summer 2022) and evaluating various
datasets (good cases, bad cases, real-world cases) and deployment scenarios (as described in
D2.3 – Business Concepts, Section 4.5).

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 12

 Functional Components

In the following, we briefly describe the proposed components for the SlotMachine system. We refer
to Chapter 5 for more detailed information on the information flow between the components. We link
the components to the relevant requirements from D2.1 – Requirements Specification [1]. An
evaluation of the fulfilment of the requirements will be part of D5.1 – SlotMachine Platform
Demonstrator [5]. We refer to D3.2 – Specification of the Privacy Engine Component [3] for more
details on the Privacy Engine and the MPC nodes as well as credit management. We refer to D4.2 –
Specification of Evolutionary Algorithm [4] for more details on the Heuristic Optimizer.

 Airspace User (AU)

Relevant requirements: loc_1–2, usab_1–6, usab_7, priv_7, sm_1, au_1–7

The Airspace User (AU) component consists of two subcomponents. The AU web application (webapp)
and the AU REST Endpoint. The webapp provides basic functionality for end users (AU representatives)
to manage participation in the SlotMachine optimization run, i.e., functionality for login, registration
for regulation for a specific airport, getting the current flight list for a regulation, submitting AU
preferences of slots for flights in form of margins and priorities, and informing AUs about upcoming
optimization runs, and the confirmed optimized flight list after the optimization run. For those
interactions with the SlotMachine system, the AU webapp uses the functionalities the AU webapp uses
a REST endpoint (AU REST). This AU REST component could also be used by AUs to plug-in their own
modules that automatically derive and submit slot preferences per flight in the future.

The user interface (UI) design and implementation will be conducted as an iterative process, in close
collaboration with the representatives of SWISS, whose knowledge of the preferences of prospective
users and insights into the current processes regarding flight prioritization will help shape the
appearance of the UI.

Which definition of “slot” is taken into consideration for slot optimization depends on the type of the
currently active regulation.

• For departure regulations a slot is a flight’s calculated take-off time (CTOT).

• For arrival regulations the slot is the flight’s CTOT at the departure airport plus the estimated
elapsed time (EET) on arrival at the destination airport, i.e., the arrival time at destination.

• For en route regulations the relevant time slot for the respective regulation is calculated based
on the estimated elapsed time (EET) added to the previous way point of the flight; en route
regulations are outside the scope of this project.

 Network Management Function (NMF)

Relevant requirements: port_1-3, rel_1-4, priv_15, co_2-3, nm_1–2

The Network Management Function component simulates EUROCONTROL’s Network Manager (see
[7]) within the SlotMachine project and is a service for providing initial slot configurations. The NMF
also accepts or denies the slot rearrangements found by the SlotMachine optimization run, publishing

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 13

the finally accepted solution to a flight prioritization problem. The NMF component interacts with the
SlotMachine’s Controller component (see Section 3.3) and implements the Network Manager B2B
interface to provide realistic test data (see Section 6.1 for further information on the test setup).

The data format for the initial slot configuration is based on the FlightListByAerodrome request and
reply format as specified in the NM B2B interface (Edition No. 25.0.0.7.142 from 08/09/2021), which
is described in Figure 3 and Figure 4, respectively.

Figure 3. FligthListByAerodromeRequest class diagram [7]

Figure 4. FligthListByAerodromeReply class diagram [7]

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 14

 Controller

Relevant requirements: co_1–8, ho_2–4, ho_8, au_2, fair_4, sm_1–4

The Controller is the central component of the SlotMachine system. The Controller handles the
SlotMachine system’s communication with the AU/Airport components as well as the NMF
component. First, the Controller relays information regarding the regulations from the NMF to the
AU/Airport component instances. The AU/Airport instances register with the Controller for updates
regarding newly issued regulations of a certain kind (departure, arrival, en route) for a particular
airport and may then obtain the flight list issued by the NMF, including additional information about
the flights, as well as information about the next optimization run to be conducted by the SlotMachine
system. Second, the Controller collects the airspace users’ slot preferences for the different flights and
initiates an optimization run. In order to be able to conduct an optimization run in a privacy-preserving
manner, the Controller also configures the Privacy Engine for use by the Heuristic Optimizer (see
Section 3.4) during an optimization run.

When initiating an optimization run, the Controller relays the AU/Airport preferences to the Heuristic
Optimizer. After the Heuristic Optimizer has finished running an optimization, the Controller collects
the result of the optimization run from the Heuristic Optimizer. The result of an optimization run – a
ranked list of optimized flight lists – are the candidates for replacing the current flight list and are
communicated to the AUs and the Airport. All candidate flight lists that are not vetoed by AUs and
Airport are acceptable solutions; the Controller collects the vetoes. After a specified time, the
Controller submits the ranked acceptable, i.e., not vetoed, candidate flight lists to the NMF for
confirmation. The NMF returns the finally accepted flight list to the Controller, which communicates
the new flight list to participating AUs and Airport. Once a new flight list has been accepted by the
NMF, the Controller takes care of updating the credit wallets via the Credit Management component
(see Section 3.10).

 Heuristic Optimizer

Relevant requirements: ho_1–9, perf_1–4, perf_6

The Heuristic Optimizer is the component that searches for better flight lists with respect to the initial
flight list given the preferences submitted to the SlotMachine system by the airspace users. The
Heuristic Optimizer employs an evolutionary algorithm to find solutions to the flight prioritization
problem. The prime candidate type of evolutionary algorithm considered for the implementation of
the Heuristic Optimizer is the genetic algorithm (see D4.1 – Report on State of the Art of Relevant
Concepts [8]). We refer to D4.2 – Specification of Evolutionary Algorithm [4] for more details on the
implementation of the evolutionary algorithm.

Intuitively, the Heuristic Optimizer generates a “population” of candidate solutions to the flight
prioritization problem, i.e., a set of flight lists, in each iteration step. The Heuristic Optimizer then
submits the population of candidate solutions to the Privacy Engine for evaluation (see Section 3.7).
Each flight list can be evaluated using a fitness function that returns a fitness value that allows to judge
how good a solution is with respect to the preferences submitted by the airspace users. The Privacy
Engine ranks the solutions in the population by fitness value and returns a maximum (and possibly a
minimum fitness value) for the population. The Privacy Engine, ideally, does not return absolute fitness
values for each flight list because that would allow a curious platform provider to log the fitness values
and infer the airspace users’ preferences.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 15

The design of the Heuristic Optimizer aims at allowing to find an acceptable solution to the flight
prioritization problem within the given time window. Hence, one guideline for the development of the
Heuristic Optimizer will be the support for parallelization as well as the possibility to abort optimization
runs at any time while still being able to obtain valid results from aborted optimization runs.
Implementation as genetic algorithm allows for such an implementation.

 Airport

Relevant requirements: loc_1–2, usab_1–6, usab_7, priv_7, sm_1, au_1–7

The implementation of the Airport component is outside the scope of the project and thus not planned
for the SlotMachine demonstrator. In an actually deployed SlotMachine system, however, airports
should have an interface as well in order for staying up-to-date regarding the optimization runs,
possibly even submitting preferences for flight prioritizations themselves. The Airport component
would be derived from the AU component, following the same general architecture with a REST
interface for interaction with the Controller on the one hand and a user interface or expert system on
the other hand for eliciting the preferences regarding flight prioritization.

 Dashboard

Relevant requirements: db_1

The Dashboard component provides public aggregated information about evaluated and confirmed
optimizations as well as spent and earned credits. The Dashboard component consists of a public
dashboard and an airline-specific private dashboard. The public dashboard does not provide any
detailed airline-specific data. The private dashboard, on the other hand, is a secured/protected area
for airlines to show AU-specific details. In case of the public dashboard, data for aggregation and
display are merely collected from the Controller component. The data for the private dashboard will
have to be collected by the airspace users themselves.

During the implementation and testing phase of the SlotMachine project, another area of the
Dashboard is the development area where developers can see details about optimization runs and
results. The Dashboard component itself will be implemented/configured using an iterative approach
together with representatives from SWISS.

On the public dashboard, the following data will be displayed in order to give an overview of the activity
on the SlotMachine platform.

• Average number of swapped flights per optimization run

• Total number of credits earned through optimization runs

• Total number of optimization runs

• Ratio between rejected solutions and found solutions by optimization runs

• Average number of flights per optimization run

The technical realization of the private dashboard still needs to be investigated. A particular challenge
is to keep the private information also hidden from the SlotMachine system to improve stakeholder

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 16

acceptance. For the private dashboard, the following detailed slot swapping information will be
displayed (subject to revision if during the Advisory Board and UI design sessions with SWISS different
preferences emerge).

• Airspace User: the user that maintained the flight optimization

• Aerodrome of Departure

• Aerodrome of Destination

• The type of the regulation the flight belongs to

• The unique identifier of the flight

• The estimated flight time (estimated elapsed time, EET)

• The initial estimated take-off time

• The priority set by the airspace user

• The time not before set by the airspace user

• The time not after set by the airspace user

• The time wished set by the airspace user

• The credits spend/earned for a specific flight swap

• The initial CTOT before the swap

• The new CTOT (“slot”) as outcome of the optimization run

Figure 5 gives a conceptual overview of the data flow to the dashboard. A metric data collector receives
metric data from multiple providers. The collected metric data are the input for generating
visualizations, which are then displayed in the dashboard.

Figure 5. Overview of the data flow to the dashboard

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 17

 Privacy Engine

Relevant requirements: pe_1–17, rel_7, priv_8, ho_6–7, mpc_3, mpc_5

The Privacy Engine (PE) component assists the Heuristic Optimizer to find optimal solutions for the
flight prioritization problem. In particular, the PE is responsible for the generation of rankings for
suggested solution to the flight prioritization problem based on the private inputs submitted by the
AUs. The PE leverages multiparty computation (MPC) to conduct the ranking of the solutions in a
privacy-preserving manner, i.e., by computing over the Us’ encrypted input data, which are thereby
kept confidential. The basic technologies used in the PE have been described in D3.1 [9] and a detailed
specification of the component is given in D3.1 [3].

The PE component is central to the management of the involvement of the MPC nodes (see
Section 3.8) and for the computation of the privacy-preserving rankings as part of the optimization
runs. To this end, the PE exposes an easy-to-use REST interface for the Heuristic Optimizer but prevents
the SlotMachine from access to any sensitive information. A high-level overview of the interaction
between Controller, Heuristic Optimizer, PE, and MPC nodes is shown in Figure 6. The AUs submit
encrypted preferences to the Controller of the SlotMachine system, which forwards the encrypted
preferences to the Privacy Engine. The Heuristic Optimizer finds new solutions, which are sent to the
PE for evaluation. Based on the evaluation results returned by the PE, the Heuristic Optimizer revises
the solutions (flight lists). The optimization run is an iterative process. The PE employs MPC nodes,
which are outside of the SlotMachine system, to perform the privacy-preserving evaluation of the flight
lists submitted by the Heuristic Optimizer.

Privacy Engine

Controller

Heuristic Optimizer

(Evolutionary Algorithm)

MPC Node MPC NodeMPC Node

Airspace

User

Iteration

Preferences

Preferences

Evaluated

Flight Lists
Flight Lists

Solution

Airspace

User

Airspace

User

SlotMachine System

Preferences
Init ial

Flight List

Public

Data

Preferences

Figure 6. Interaction between Privacy Engine and Heuristic Optimizer as well as MPC nodes

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 18

In addition to the core evaluation service offered within PE, a dedicated encoding service is also
provided. It is responsible for the client-side encoding of the AU private inputs. The encoding service
can be either used as a service or also run locally by AUs.

 MPC Nodes

Relevant requirements: mpc_1–17, pe_10–11

To achieve highest security standards in SlotMachine we use cryptographic techniques for both, to
protect business secrets and to enable transparency in the system. To protect business secrets of
airlines which are necessary for the platform to operate and optimize slot usage we are using
multiparty computation (MPC) among others. This enables us to keep all sensitive information
encrypted in the system during its entire life cycle, i.e., to even process it in encrypted form. This will
significantly reduce the attack surface of the SlotMachine system and gives best prevention from data
leakage, even from unintentional leakage of the platform operator due to misconfiguration or
unknown software bugs. Additionally, protecting input data of competing airlines also forces honest
bidding and prioritization of flights in the optimization process and prevents from collusion or bid
rigging. Finally, to enable reliable and trustworthy data exchange between all participants of the
platform we use blockchain technology. The blockchain enables as a trust anchor in the system and
can be used to track all kinds of transactions in a robust manner. The blockchain serves as a
(distributed) trust anchor for public data storage and can be used to track all kinds of transactions in a
robust manner. It can also be used to manage the credit system used in SlotMachine to enable equity
and fairness in the long run. All in all, the use of these technologies should increase the trustworthiness
in to the SlotMachine platform thus leading to a higher participation of airlines ultimately leading to a
more efficient operation of flights and airports. In the following we quickly introduce the core
technologies mentioned, which were carefully studied in D3.1 [9].

Multiparty computation (MPC) is a protocol between a defined number of players (or servers) holding
secure inputs to securely compute some function f on these inputs. The security of the inputs should
hold, even if players exhibit some amount of adversarial behaviour. The goal can be accomplished by
an interactive protocol that the players execute. Intuitively, we want that the protocol execution is
equivalent to having a trusted party T that receives the inputs privately, computes the function and
returns the result, i.e., the MPC protocols emulates a trusted party in a distributed setting. With such
a protocol we can - in principle - solve virtually any computation problem. The general theory of MPC
was founded in the late 1980s and a huge body of research exists on the topic (see D3.1 – Report on
State of the Art of Relevant Concepts [9]). However, until recently the concept was still considered
impractical. Nevertheless, progress in the last decade culminated in many novel protocols which
achieve good practical performance and can be used in real world applications.

Many different MPC protocols have been proposed in the past and they achieve very different
properties and security guarantees. The main cryptographic properties achieved by a MPC protocol
are correctness (if all parties behave honest the results of the computation is correct) and input privacy
(a participating party does not learn anything about the inputs of other parties beyond what can be
inferred from the result of the computation). In essence, MPC enables us to compute on encrypted
data in a distributed setting, without decrypting them in the first place and the security of the input
data for the computation is preserved as long as not more than a given thresholds of the servers are
compromised by a single entity. In SlotMachine this technology will help to protect the privacy of
sensitive data given by airspace users to the platform to conduct the global inter airline optimization
process.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 19

This component is the basic compute element used for privacy preserving data computation and is
specified in detail in D3.2 [3]. MPC nodes are controlled by the privacy engine and are instantiated and
interconnected on a session basis to jointly conduct the real computation of the ranking. They only
expose an interface via the privacy engine and are not intended to be used by any other component,
they are also providing an encrypted channel to the AU client to receive sensitive information which
must be hidden from all other components in the system. For this channel standard public key
cryptography is used.

 Blockchain

Relevant requirements: sm_4, co_7–8, rel_6

The design of the blockchain is still in development. A final decision requires additional experiments
and discussions. In the following, we summarize the current state of our research.

A blockchain represents a distributed system that records transactions on a shared ledger. Its two main
features are: consistency (ensures that all participants have the same view of the ledger) and
immutability (ensures that if a transaction is accepted to the ledger, it cannot change any more).
Distributed (shared) ledgers, especially those based on a blockchain, have been used for various
purposes, initially as a provider of cryptocurrency but later also in different areas including academics,
IoT, finance, industries, etc. From the emergence of Bitcoin in 2008, many development variants of
this technology have emerged, e.g., Ethereum, various Hyperledger projects, Cardano, and others.

A blockchain-based system consists of network tasks on the lowest level, a consensus mechanism and
a way of processing transactions including programming capabilities. The many blockchain frameworks
differ in the strategy which was chosen for these three building blocks, especially the consensus
mechanism and the transaction processing. With the consensus protocol, the nodes will be able to
agree on a block which will be added to the immutable data structure. Blockchain-based systems rely
on many cryptographic primitives and thereby provide a certain level of security. Often, they are also
highly scalable, allowing for worldwide networks with hundreds of thousand nodes, but sometimes
also smaller, closed networks are desirable.

The basic structure of a slot swapping service for a given airport naturally maps to a closed user group
which maintains private information. The users of the system are rather static and known, therefore,
a permissioned system seems to be most adequate. Furthermore, since we deal with a secure slot
swapping service between competitive airlines, we assume that there can be adversaries among
multiple parties participating in the network. Therefore, our system should be robust and cope with
so called Byzantine failures, which addresses the challenges of potential adversaries in the network.

In SlotMachine, we aim to use the Tendermint framework for creating the SlotMachine blockchain.
Every AU will also host their own blockchain client and may also run a blockchain node. The Tendermint
blockchain is resistant to corruption on the provider side and also collusion of AUs as long as less than
one third of the nodes are malicious.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 20

 Credit Wallets and Wallet Management

Relevant requirements: priv_11–14, fair_3, sm_2–4, co_7–8, au_4

The design of the credit wallet management is still in development. A final decision requires additional
experiments and discussions. In the following, we summarize the current state of our research.

The credit wallets are maintained by a Wallet Management component that is attached to the
Controller. The Controller, via the Wallet Management component, manages the wallets on behalf of
the AUs. The credit balances are read-only for the AUs. AUs may view their own credit balances and
changes of the credit balance in real-time but not those of others.

The Us’ credit balances are written regularly to the blockchain (see Section 3.9) but not instantly, i.e.,
not after every transaction but in accumulated form after certain intervals. The accumulated credit
balances that are written on the blockchain are visible to every AU, but since that is not in real-time,
the leakage of secrets is minimal. At the same time, allowing every AU to see how credit balances of
the others change will likely increase the trust in the system’s fairness through improved transparency.
The system will be auditable if all parties collaborate and share raw data.

Note that Credit Wallets and Wallet Management are only required for realizing the market
mechanisms SM1 and SM3 described in D2.3 – Business Concepts [3].

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 21

 Interfaces

In this chapter, we describe REST and WebSocket interfaces of the functional components identified
in Chapter 3.

 Controller

POST /regulations/request

Request flight lists and regulations from NMF.

Parameter

This operation does not require parameters.

Example responses

201 Response

Responses

Status Meaning Description Schema

201 Created Created string

400 Bad Request Bad Request string

404 Not Found Not found string

POST /regulations

Read flight lists and regulations from given data

Body parameter

<?xml version="1.0" encoding="UTF-8" ?>
<EnvelopeDTO>
 <body>
 <flightListByAerodromeReply>
 <requestReceptionTime>
 <text>2021-10-02 05:01:10</text>
 </requestReceptionTime>
 <requestId>R2C_ARD:16598542</requestId>
 <sendTime>
 <text>2021-10-02 05:01:11</text>
 </sendTime>
 <status>OK</status>
 <data>
 <effectiveTrafficWindow>
 <wef>2021-10-02 00:00</wef>

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 22

 <unt>2021-10-02 22:00</unt>
 </effectiveTrafficWindow>
 <flights>
 <flight>
 <flightId>FLIGHT1566</flightId>
 <keys>
 <aircraftId>AIRTXZS</aircraftId>
 <aerodromeOfDeparture>LSZH</aerodromeOfDeparture>
 <nonICAOAerodromeOfDeparture>
 false
 </nonICAOAerodromeOfDeparture>
 <airFiled>false</airFiled>
 <aerodromeOfDestination>DESM</aerodromeOfDestination>
 <nonICAOAerodromeOfDestination>
 false
 </nonICAOAerodromeOfDestination>
 <estimatedOffBlockTime>
 2021-10-02 13:05
 </estimatedOffBlockTime>
 </keys>
 <aircraftType>A319</aircraftType>
 <scheduledTakeOffTime>2021-10-02 13:20</scheduledTakeOffTime>
 <estimatedTakeOffTime>2021-10-02 13:20</estimatedTakeOffTime>
 <aircraftOperator>SWR</aircraftOperator>
 <operatingAircraftOperator>SWR</operatingAircraftOperator>
 <slotIssued>true</slotIssued>
 <delay>0</delay>
 <mostPenalisingRegulation>
 REGULATION1
 </mostPenalisingRegulation>
 <filedRegistrationMark>FRIOZ</filedRegistrationMark>
 <slotSwapCounter>
 <currentCounter>0</currentCounter>
 <maxLimit>3</maxLimit>
 </slotSwapCounter>
 </flight>
 </flights>
 </data>
 </flightListByAerodromeReply>
 </body>
</EnvelopeDTO>

Parameters

Name In Type Required Description

body body EnvelopeDTO true none

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 23

Example responses

201 Response

{
 "body": {
 "flightListByAerodromeReply": {
 "requestReceptionTime": {
 "text": "2021-10-02T05:01:00"
 },
 "requestId": "R2C_ARD:16598542",
 "sendTime": {
 "text": "2021-10-02T05:01:00"
 },
 "status": "OK",
 "data": {
 "effectiveTrafficWindow": {
 "wef": "2021-10-02 00:00",
 "unt": "2021-10-02 22:00"
 },
 "flights": [
 {
 "flight": {
 "flightId": {
 "flightId": "FLIGHT1566",
 "keys": {
 "aircraftId": "AIRTXZS",
 "aerodromeOfDeparture": "LSZH",
 "nonICAOAerodromeOfDeparture": false,
 "airFiled": false,
 "aerodromeOfDestination": "DESM",
 "nonICAOAerodromeOfDestination": false,
 "estimatedOffBlockTime": {
 "text": "2021-10-02T13:05:00"
 }
 }
 },
 "aircraftType": "A319",
 "estimatedTakeOffTime": {
 "text": "2021-10-02T13:20:00"
 },
 "estimatedTimeOfArrival": {
 "text": "2021-10-02T14:29:00"
 },
 "aircraftOperator": "SWR",
 "operatingAircraftOperator": "SWR",
 "filedRegistrationMark": "FRIOZ",
 "slotSwapCounter": {
 "currentCounter": "0",
 "maxLimit": "3"
 },
 "calculatedTakeOffTime": {

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 24

 "text": "2021-10-02T13:20:00"
 },
 "mostPenalisingRegulation": "REGULATION1",
 "mostPenalisingRegulationCause": {
 "reason": "AERODROME_CAPACITY",
 "locationCategory": "DEPARTURE"
 }
 }
 }
]
 }
 }
 }
}

The output is the representation of the given flight list data.

Responses

Status Meaning Description Schema

201 Created Created EnvelopeDTO

400 Bad Request Bad Request string

POST /optimizations/{optId}/start

Start optimization process

Parameters

Name In Type Required Description

optId path string true none

Example responses

200 Response

Responses

Status Meaning Description Schema

200 OK OK string

400 Bad Request Bad Request string

404 Not Found Not found string

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 25

POST /optimizations/{optId}/solutions/propose

Propose flight list to NMF

Parameters

Name In Type Required Description

optId path string true none

Example responses

200 Response

{
 "regulationId": "REGULATION1",
 "optimizationId": "119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "currentServerTime": "2019-08-24 14:15",
 "rejectUntil": "2019-08-24 14:15",
 "solutions": [
 {
 "regulationId": "REGULATION1",
 "optimizationId": "119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "solutionId": "SOLUTION1",
 "priority": 1,
 "flights": [
 {
 "flightId": "FLIGHT1566",
 "slotTime": "2019-08-24 14:15"
 }
]
 }
]
}

Responses

Status Meaning Description Schema

200 OK OK SolutionListDTO

400 Bad Request Bad Request string

404 Not Found Not found SolutionListDTO

POST /registrations

Register airspace user for regulations at an airport

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 26

Register an airspace user’s client for regulations at an airport; overwrite existing registration of an
airspace user if already exists.

Body parameter

{
 "airlineId": "SWR",
 "airportId": "LSZH",
 "regulationType": "DEPARTURE",
 "callbackEndpoint": "http://localhost:8080/callbackEndpoint"
}

Parameters

Name In Type Required Description

body body RegulationRegistrationDTO true none

Example responses

200 Response

{
 "airlineId": "SWR",
 "airportId": "LSZH",
 "regulationType": "DEPARTURE",
 "callbackEndpoint": "http://localhost:8080/callbackEndpoint"
}

Responses

Status Meaning Description Schema

200 OK Resource updated RegulationRegistrationDTO

201 Created Resource created RegulationRegistrationDTO

400 Bad Request Invalid input supplied None

default Default The registration RegulationRegistrationDTO

POST /optimizations/{optId}/solutions/{solutionId}/rejection/{airlineId}

Reject a solution found by an optimization run

Parameters

Name In Type Required Description

optId path string true none

solutionId path string true none

airlineId path string true none

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 27

Example responses

200 Response

{
 "airlineId": "SWR",
 "regulationId": "LSZH",
 "optimizationId": " 119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "solutionId": "SOLUTION1"
}

Responses

Status Meaning Description Schema

200 OK OK RejectedSolutionDTO

400 Bad Request Bad Request string

404 Not Found Not found RejectedSolutionDTO

POST /optimizations/{optId}/solutions/rejections

Reject multiple solutions found by an optimization run

Body parameter

{
 "airlineId": "SWR",
 "regulationId": "REGULATION1",
 "optimizationId": " 119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "rejectedSolutions": [
 {
 "airlineId": "SWR",
 "regulationId": "REGULATION1",
 "optimizationId": " 119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "solutionId": "SOLUTION1"
 }
]
}

Parameters

Name In Type Required Description

body body RejectedSolutionListDTO true none

Example responses

200 Response

{
 "airlineId": "SWR",
 "regulationId": "REGULATION1",
 "optimizationId": " 119c4ba1-0895-4fec-bf18-23273d64b8d7",

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 28

 "rejectedSolutions": [
 {
 "airlineId": "SWR",
 "regulationId": "REGULATION1",
 "optimizationId": " 119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "solutionId": "SOLUTION1"
 }
]
}

Responses

Status Meaning Description Schema

200 OK OK RejectedSolutionListDTO

400 Bad Request Bad Request string

404 Not Found Not found RejectedSolutionListDTO

POST /optimizations/{optId}/solutions/accept

Notify the SlotMachine of the accepted flight list

Body parameter

{
 "optimizationId": "119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "solutionId": "SOLUTION1"
}

Parameters

Name In Type Required Description

optId path string true none

body body AcceptedFlightListDTO true none

Example responses

200 Response

{
 "optimizationId": "119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "solutionId": "SOLUTION1"
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 29

Responses

Status Meaning Description Schema

200 OK OK AcceptedFlightListDTO

400 Bad Request Bad Request string

404 Not Found Not found AcceptedFlightListDTO

POST /optimizations/{optId}/preferences/{airlineId}

Submit slot preferences for flights

Submit slot preferences for flights of an airspace user.

Body parameter

[
 {
 "regulationId": "REGULATION1",
 "optimizationId": "119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "airlineId": "SWR",
 "flights": [
 {
 "flightId": "FLIGHT1566",
 "weightMap": [
 {
 "slotTime": "2021-10-02 13:20",
 "weight": "100"
 }
]
 }
]
 }
]

Parameters

Name In Type Required Description

optimizationId path string true none

airlineId path string true none

body body WeightMapDTO true none

Example responses

200 Response

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 30

[
 {
 "regulationId": "REGULATION1",
 "optimizationId": "119c4ba1-0895-4fec-bf18-23273d64b8d7",
 "airlineId": "SWR",
 "flights": [
 {
 "flightId": "FLIGHT1566",
 "weightMap": [
 {
 "slotTime": "2021-10-02 13:20",
 "weight": "100"
 }
]
 }
]
 }
]

Responses

Status Meaning Description Schema

200 OK OK Inline

400 Bad Request Bad Request string

404 Not Found Not found Inline

Response Schema

Status Code 200

Name Type Required Restrictions Description

anonymous [WeightMapDTO] false none

» regulationId string false none none

» optimizationId string false none none

» airlineId string false none none

» flights [WeightMapFlightDTO] false none none

»» flightId string false none none

»» weightMap [WeightMapObjectDTO] false none none

»»» slotTime string(date-time) false none none

»»» weight string false none none

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 31

Status Code 404

Name Type Required Restrictions Description

anonymous [WeightMapDTO] false none none

» regulationId string false none none

» optimizationId string false none none

» airlineId string false none none

» flights [WeightMapFlightDTO] false none none

»» flightId string false none none

»» weightMap [WeightMapObjectDTO] false none none

»»» slotTime string(date-time) false none none

»»» weight string false none none

POST /optimizations/{optId}/preferences

Submit slot preferences for flights

Submit slot preferences for flights of an airspace user.

Body parameter

[
 {
 "regulationId": "string",
 "optimizationId": "string",
 "airlineId": "string",
 "flights": [
 {
 "flightId": "string",
 "weightMap": [
 {
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
 }
]
 }
]
 }
]

Parameters

Name In Type Required Description

optimizationId path string true none

body body WeightMapDTO true none

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 32

Example responses

200 Response

[
 {
 "regulationId": "string",
 "optimizationId": "string",
 "airlineId": "string",
 "flights": [
 {
 "flightId": "string",
 "weightMap": [
 {
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
 }
]
 }
]
 }
]

Responses

Status Meaning Description Schema

200 OK OK Inline

400 Bad Request Bad Request string

404 Not Found Not found Inline

Response Schema

Status Code 200

Name Type Required Restrictions Description

anonymous [WeightMapDTO] false none none

» regulationId string false none none

» optimizationId string false none none

» airlineId string false none none

» flights [WeightMapFlightDTO] false none none

»» flightId string false none none

»» weightMap [WeightMapObjectDTO] false none none

»»» slotTime string(date-time) false none none

»»» weight string false none none

Status Code 404

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 33

Name Type Required Restrictions Description

anonymous [WeightMapDTO] false none none

» regulationId string false none none

» optimizationId string false none none

» airlineId string false none none

» flights [WeightMapFlightDTO] false none none

»» flightId string false none none

»» weightMap [WeightMapObjectDTO] false none none

»»» slotTime string(date-time) false none none

»»» weight string false none none

POST /optimizations/preferences

Submit slot preferences for flights

Submit slot preferences for flights of an airspace user.

Body parameter

[
 {
 "regulationId": "string",
 "optimizationId": "string",
 "airlineId": "string",
 "flights": [
 {
 "flightId": "string",
 "weightMap": [
 {
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
 }
]
 }
]
 }
]

Parameters

Name In Type Required Description

body body WeightMapDTO true none

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 34

Example responses

200 Response

[
 {
 "regulationId": "string",
 "optimizationId": "string",
 "airlineId": "string",
 "flights": [
 {
 "flightId": "string",
 "weightMap": [
 {
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
 }
]
 }
]
 }
]

Responses

Status Meaning Description Schema

200 OK OK Inline

400 Bad Request Bad Request string

404 Not Found Not found Inline

Response Schema

Status Code 200

Name Type Required Restrictions Description

anonymous [WeightMapDTO] false none none

» regulationId string false none none

» optimizationId string false none none

» airlineId string false none none

» flights [WeightMapFlightDTO] false none none

»» flightId string false none none

»» weightMap [WeightMapObjectDTO] false none none

»»» slotTime string(date-time) false none none

»»» weight string false none none

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 35

Status Code 404

Name Type Required Restrictions Description

anonymous [WeightMapDTO] false none none

» regulationId string false none none

» optimizationId string false none none

» airlineId string false none none

» flights [WeightMapFlightDTO] false none none

»» flightId string false none none

»» weightMap [WeightMapObjectDTO] false none none

»»» slotTime string(date-time) false none none

»»» weight string false none none

GET /registrations/{airlineId}/{airportId}/optimizations/current/flightList

Get current optimization

Get information about the current optimization for an airspace user’s registration.

Parameters

Name In Type Required Description

airlineId path string true none

airportId path string true none

Example responses

200 Response

{
 "optimization": {
 "regulationId": "string",
 "requestReceptionTime": "2019-08-24T14:15:22Z",
 "requestId": "string",
 "optimizationId": "string",
 "state": "WAIT_FOR_INPUTS",
 "currentServerTime": "2019-08-24T14:15:22Z",
 "cutOffTime": "2019-08-24T14:15:22Z",
 "nextOptimizationRun": "2019-08-24T14:15:22Z"
 },
 "slots": [
 {
 "slotTime": "2019-08-24T14:15:22Z"
 }
],

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 36

 "flights": [
 {
 "flightId": "string",
 "keys": {
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "string",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
 }
]
}

Responses

Status Meaning Description Schema

200 OK OK FlightListDTO

400 Bad Request Bad Request string

404 Not Found Not found FlightListDTO

GET /optimizations/{optId}/solutions/accepted

Get accepted solution of optimization runs

Parameters

Name In Type Required Description

optId path string true none

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 37

Example responses

200 Response

{
 "regulationId": "string",
 "optimizationId": "string",
 "currentServerTime": "2019-08-24T14:15:22Z",
 "rejectUntil": "2019-08-24T14:15:22Z",
 "solutions": [
 {
 "regulationId": "string",
 "optimizationId": "string",
 "solutionId": "string",
 "priority": 0,
 "flights": [
 {
 "flightId": "string",
 "slotTime": "2019-08-24T14:15:22Z"
 }
]
 }
]
}

Responses

Status Meaning Description Schema

200 OK accepted solution SolutionListDTO

400 Bad Request Bad Request string

404 Not Found Not found SolutionListDTO

GET /optimizations/{optId}/solutions

Get results of optimization runs

Parameters

Name In Type Required Description

optId path string true none

Example responses

200 Response

{
 "regulationId": "string",

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 38

 "optimizationId": "string",
 "currentServerTime": "2019-08-24T14:15:22Z",
 "rejectUntil": "2019-08-24T14:15:22Z",
 "solutions": [
 {
 "regulationId": "string",
 "optimizationId": "string",
 "solutionId": "string",
 "priority": 0,
 "flights": [
 {
 "flightId": "string",
 "slotTime": "2019-08-24T14:15:22Z"
 }
]
 }
]
}

Responses

Status Meaning Description Schema

200 OK Array of optimization results SolutionListDTO

400 Bad Request Bad Request string

404 Not Found Not found SolutionListDTO

DELETE /registrations/{airlineId}/{airportId}

Delete an airspace user client’s registration for regulations at an airport

Parameters

Name In Type Required Description

airlineId path string true none

airportId path string true none

Example responses

200 Response

{
 "airlineId": "string",
 "airportId": "string",
 "regulationType": "DEPARTURE",
 "callbackEndpoint": "string"
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 39

Responses

Status Meaning Description Schema

200 OK Has been deleted RegulationRegistrationDTO

400 Bad Request Bad Request string

404 Not Found Not found RegulationRegistrationDTO

GET /controller/active

Check if controller is active

Responses

Status Meaning Description Schema

200 OK OK string

400 Bad Request Bad Request string

Schemas

In the following, we describe the schema of the data transfer objects.

BodyDTO

{
 "flightListByAerodromeReply": {
 "requestReceptionTime": {
 "text": "2019-08-24T14:15:22Z"
 },
 "requestId": "string",
 "sendTime": {
 "text": "2019-08-24T14:15:22Z"
 },
 "status": "string",
 "data": {
 "effectiveTrafficWindow": {
 "wef": "string",
 "unt": "string"
 },
 "flights": [
 {
 "flight": {
 "flightId": "string",
 "keys": {
 "aircraftId": "string",

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 40

 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "string",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
 }
 }
]
 }
 }
}

Name Type Required Description

flightListByAerodromeReply FlightListByAerodromeReplyDTO false none

DataDTO

{
 "effectiveTrafficWindow": {
 "wef": "string",
 "unt": "string"
 },
 "flights": [
 {
 "flight": {
 "flightId": "string",
 "keys": {
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 41

 },
 "aircraftType": "string",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
 }
 }
]
}

Name Type Required Description

effectiveTrafficWindow EffectiveTrafficWindowDTO false none

flights [FlightsDTO] false none

EffectiveTrafficWindowDTO

{
 "wef": "string",
 "unt": "string"
}

Name Type Required Restrictions Name

wef string false none wef

unt string false none none

EnvelopeDTO

{
 "body": {
 "flightListByAerodromeReply": {
 "requestReceptionTime": {
 "text": "2019-08-24T14:15:22Z"
 },
 "requestId": "string",
 "sendTime": {
 "text": "2019-08-24T14:15:22Z"
 },
 "status": "string",
 "data": {

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 42

 "effectiveTrafficWindow": {
 "wef": "string",
 "unt": "string"
 },
 "flights": [
 {
 "flight": {
 "flightId": "string",
 "keys": {
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "string",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
 }
 }
]
 }
 }
 }
}

Name Type Required Description

body BodyDTO false

FlightDTO

{
 "flightId": "string",
 "keys": {
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 43

 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "string",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
}

Name Type Required Description

flightId string false

keys FlightKeyDTO false

aircraftType string false

scheduledTakeOffTime string(date-time) false

estimatedTakeOffTime string(date-time) false

aircraftOperator string false

operatingAircraftOperator string false

slotIssued boolean false

delay integer(int32) false

mostPenalisingRegulation string false

filedRegistrationMark string false

slotSwapCounter SlotSwapCounterDTO false

FlightListByAerodromeReplyDTO

{
 "requestReceptionTime": {
 "text": "2019-08-24T14:15:22Z"
 },
 "requestId": "string",
 "sendTime": {
 "text": "2019-08-24T14:15:22Z"
 },
 "status": "string",
 "data": {

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 44

 "effectiveTrafficWindow": {
 "wef": "string",
 "unt": "string"
 },
 "flights": [
 {
 "flight": {
 "flightId": "string",
 "keys": {
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "string",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
 }
 }
]
 }
}

Name Type Required Description

requestReceptionTime LocalDateTimeToMinOrSecDTO false

requestId string false

sendTime LocalDateTimeToMinOrSecDTO false

status string false

data DataDTO false

FlightsDTO

{
 "flight": {
 "flightId": "string",

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 45

 "keys": {
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "string",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
 }
}

Name Type Required Description

flight FlightDTO false

LocalDateTimeToMinOrSecDTO

{
 "text": "2019-08-24T14:15:22Z"
}

Name Type Required Description

text string(date-time) false

SlotSwapCounterDTO

{
 "currentCounter": 0,
 "maxLimit": 0
}

Name Type Required Description

currentCounter integer(int32) false

maxLimit integer(int32) false

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 46

RegulationRegistrationDTO

{
 "airlineId": "string",
 "airportId": "string",
 "regulationType": "DEPARTURE",
 "callbackEndpoint": "string"
}

Name Type Required Description

airlineId string false

airportId string false

regulationType string false

callbackEndpoint string false

Property Value

regulationType DEPARTURE

regulationType ARRIVAL

regulationType EN_ROUTE

RejectedSolutionDTO

{
 "airlineId": "string",
 "regulationId": "string",
 "optimizationId": "string",
 "solutionId": "string"
}

Name Type Required Description

airlineId string false

regulationId string false

optimizationId string false

solutionId string false

RejectedSolutionListDTO

{
 "airlineId": "string",
 "regulationId": "string",
 "optimizationId": "string",
 "rejectedSolutions": [
 {

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 47

 "airlineId": "string",
 "regulationId": "string",
 "optimizationId": "string",
 "solutionId": "string"
 }
]
}

Name Type Required Description

airlineId string false

regulationId string false

optimizationId string false

rejectedSolutions [RejectedSolutionDTO] false

SolutionDTO

{
 "regulationId": "string",
 "optimizationId": "string",
 "solutionId": "string",
 "priority": 0,
 "flights": [
 {
 "flightId": "string",
 "slotTime": "2019-08-24T14:15:22Z"
 }
]
}

Name Type Required Description

regulationId string false

optimizationId string false

solutionId string false

priority integer(int32) false

flights [SolutionFlightDTO] false

SolutionFlightDTO

{
 "flightId": "string",
 "slotTime": "2019-08-24T14:15:22Z"
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 48

Name Type Required Description

flightId string false

slotTime string(date-time) false

SolutionListDTO

{
 "regulationId": "string",
 "optimizationId": "string",
 "currentServerTime": "2019-08-24T14:15:22Z",
 "rejectUntil": "2019-08-24T14:15:22Z",
 "solutions": [
 {
 "regulationId": "string",
 "optimizationId": "string",
 "solutionId": "string",
 "priority": 0,
 "flights": [
 {
 "flightId": "string",
 "slotTime": "2019-08-24T14:15:22Z"
 }
]
 }
]
}

Name Type Required Description

regulationId string false

optimizationId string false

currentServerTime string(date-time) false

rejectUntil string(date-time) false

solutions [SolutionDTO] false

AcceptedFlightListDTO

{
 "optimizationId": "string",
 "solutionId": "string"
}

Name Type Required Description

optimizationId string false

solutionId string false

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 49

WeightMapDTO

{
 "regulationId": "string",
 "optimizationId": "string",
 "airlineId": "string",
 "flights": [
 {
 "flightId": "string",
 "weightMap": [
 {
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
 }
]
 }
]
}

Name Type Required Description

regulationId string false

optimizationId string false

airlineId string false

flights [WeightMapFlightDTO] false

WeightMapFlightDTO

{
 "flightId": "string",
 "weightMap": [
 {
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
 }
]
}

Name Type Required Description

flightId string false

weightMap [WeightMapObjectDTO] false

WeightMapObjectDTO

{
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 50

Name Type Required Description

slotTime string(date-time) false

weight string false

FlightKeyDTO

{
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
}

Name Type Required Description

aircraftId string false

aerodromeOfDeparture string false

nonICAOAerodromeOfDeparture boolean false

airFiled boolean false

aerodromeOfDestination string false

nonICAOAerodromeOfDestination boolean false

estimatedOffBlockTime string(date-time) false

FlightListDTO

{
 "optimization": {
 "regulationId": "string",
 "requestReceptionTime": "2019-08-24T14:15:22Z",
 "requestId": "string",
 "optimizationId": "string",
 "state": "WAIT_FOR_INPUTS",
 "currentServerTime": "2019-08-24T14:15:22Z",
 "cutOffTime": "2019-08-24T14:15:22Z",
 "nextOptimizationRun": "2019-08-24T14:15:22Z"
 },
 "slots": [
 {
 "slotTime": "2019-08-24T14:15:22Z"
 }
],
 "flights": [
 {
 "flightId": "string",

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 51

 "keys": {
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "string",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
 }
]
}

Name Type Required Description

optimization OptimizationDTO false

slots [SlotDTO] false

flights [FlightDTO] false

OptimizationDTO

{
 "regulationId": "string",
 "requestReceptionTime": "2019-08-24T14:15:22Z",
 "requestId": "string",
 "optimizationId": "string",
 "state": "WAIT_FOR_INPUTS",
 "currentServerTime": "2019-08-24T14:15:22Z",
 "cutOffTime": "2019-08-24T14:15:22Z",
 "nextOptimizationRun": "2019-08-24T14:15:22Z"
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 52

Name Type Required Description

regulationId string false

requestReceptionTime string(date-time) false

requestId string false

optimizationId string false

state string false

currentServerTime string(date-time) false

cutOffTime string(date-time) false

nextOptimizationRun string(date-time) false

Property Value

state WAIT_FOR_INPUTS

state CUT_OFF_TIME_REACHED

state OPTIMIZATION_RUNNING

state WAITING_FOR_REJECTS

state WAITING_FOR_NM_CONFIRMATION

state FINISHED

SlotDTO

{
 "slotTime": "2019-08-24T14:15:22Z"
}

Name Type Required Restrictions Description

slotTime string(date-time) false none none

 Heuristic Optimizer

POST /optimizations

Create and initialize a (heuristic) optimization for flights and slots.

Body parameter

{
 "flights": [
 {
 "flightId": "F1",
 "scheduledTime": "2019-08-24T14:15:22Z",
 }
],

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 53

 "initialFlightSequence": [
 "F1", "F2", "F3"
],
 "optId": "0d6b6665-5948-4218-bf74-bb86e549040e",
 "optimizationFramework": "JENETICS",
 "optimizationMode": "PRIVACY_PRESERVING",
 "fitnessEstimator": "LINEAR",
 "parameters": {},
 "privacyEngineEndpoint": "https://example.com/privacy_engine",
 "slots": [
 {
 "time": "2019-08-24T14:15:22Z"
 }
]
}

We refer to D4.2 – Specification of Evolutionary Algorithm [4] for more detailed specifications of the
parameters. Please note the following regarding the parameters.

• The “parameters” map consists of key/value pairs that may contain additional parameters for
the optimization run that are specific to the used optimization framework, e.g., Jenetics. If
omitted, default values will be used.

• The Heuristic Optimizer also allows to pass margins and weight maps for running the optimizer
in a non-privacy-preserving mode that does not involve a Privacy Engine. This should not be
confused with the non-privacy-preserving demonstrator iteration of the SlotMachine system
but rather serves for development and demonstration purposes but could also serve as the
basis for a SlotMachine system that supports multi-objective optimization without a Privacy
Engine.

Parameters

Name In Type Required Description

body body OptimizationDTO true optimization

Example responses

201 Response

{
 "flights": [
 {
 "flightId": "F1",
 "scheduledTime": "2019-08-24T14:15:22Z",
 }
],
 "initialFlightSequence": [
 "F1", "F2", "F3"
],

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 54

 "optId": "0d6b6665-5948-4218-bf74-bb86e549040e",
 "optimizationFramework": "JENETICS",
 "optimizationMode": "PRIVACY_PRESERVING",
 "fitnessEstimator": "LINEAR",
 "optimizationStatus": "CREATED",
 "parameters": {},
 "privacyEngineEndpoint": "https://10.0.0.138/privacy_engine/",
 "slots": [
 {
 "time": "2019-08-24T14:15:22Z"
 }
],
 "timestamp": "2019-08-24T14:15:22Z"
}

The output is a representation of the optimization run that was just created. The optimization status
is set to “CRE TED”. The timestamp shows the date and time that the request was made, indicating
at which point in time the data about the optimization run was current.

Responses

Status Meaning Description Schema

200 OK OK OptimizationDTO

201 Created Created OptimizationDTO

400 Bad Request Bad Request None

401 Unauthorized Unauthorized None

403 Forbidden Forbidden None

404 Not Found Not Found None

GET /optimizations/{optId}

Get the description of a specific optimization.

Parameters

Name In Type Required Description

optId path string true the optimization’s identifier

Example responses

200 Response

{
 "flights": [

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 55

 {
 "flightId": "F1",
 "scheduledTime": "2019-08-24T14:15:22Z",
 }
],
 "initialFlightSequence": [
 "F1"
],
 "optId": "0d6b6665-5948-4218-bf74-bb86e549040e",
 "optimizationFramework": "JENETICS",
 "optimizationMode": "PRIVACY_PRESERVING",
 "fitnessEstimator": "LINEAR",
 "optimizationStatus": "INITIALIZED",
 "parameters": {},
 "privacyEngineEndpoint": "https://10.0.0.138/privacy_engine/",
 "slots": [
 {
 "time": "2019-08-24T14:15:22Z"
 }
],
 "timestamp": "2019-08-24T14:15:22Z"
}

Responses

Status Meaning Description Schema

200 OK OK OptimizationDTO

401 Unauthorized Unauthorized None

403 Forbidden Forbidden None

404 Not Found Not Found None

DELETE /optimizations/{optId}

Delete an optimization and its results, if available. Abort a running optimization.

Parameters

Name In Type Required Description

optId path string true the optimization’s identifier

Responses

Status Meaning Description Schema

200 OK OK; the deletion worked None

204 No Content No Content None

401 Unauthorized Unauthorized None

403 Forbidden Forbidden None

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 56

Status Meaning Description Schema

404 Not Found Not Found; no optimization with the
specified identifier exists

None

PUT /optimizations/{optId}/start

Start a specific optimization that was previously created and initialized.

Parameters

Name In Type Required Description

optId path string true the optimization’s identifier

Example responses

202 Response

{
 "fitnessEstimator": "LOGARITHMIC",
 "flights": [
 {
 "flightId": "F01",
 "margins": {
 "scheduledTime": "2019-08-24T14:15:22Z",
 "timeNotAfter": "2019-08-24T14:15:22Z",
 "timeNotBefore": "2019-08-24T14:15:22Z",
 "timeWished": "2019-08-24T14:15:22Z"
 },
 "scheduledTime": "2019-08-24T14:15:22Z",
 "weightMap": [
 10, 10, 100
]
 }
],
 "initialFlightSequence": [
 "string"
],
 "optId": "string",
 "optimizationFramework": "string",
 "optimizationMode": "PRIVACY_PRESERVING",
 "optimizationStatus": "RUNNING",
 "parameters": {},
 "privacyEngineEndpoint": "string",
 "slots": [
 {
 "time": "2019-08-24T14:15:22Z"
 }

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 57

],
 "timestamp": "2019-08-24T14:15:22Z"
}

Responses

Status Meaning Description Schema

200 OK OK; the optimization is already running. OptimizationDTO

202 Accepted Accepted; if the optimization was successfully started. OptimizationDTO

303 See Other See Other; returns location of result in header, if
cancelled or already done.

None

401 Unauthorized Unauthorized None

403 Forbidden Forbidden None

404 Not Found Not Found None

PUT /optimizations/{optId}/abort

Abort a previously started optimization; if available, an intermediate result can be obtained.

Parameters

Name In Type Required Description

optId path string true the optimization’s identifier

Example responses

200 Response

{
 "fitnessEstimator": "string",
 "flights": [
 {
 "flightId": "F1",
 "scheduledTime": "2019-08-24T14:15:22Z",
 }
],
 "initialFlightSequence": [
 "F1"
],
 "optId": "0d6b6665-5948-4218-bf74-bb86e549040e",
 "optimizationFramework": "JENETICS",
 "optimizationMode": "PRIVACY_PRESERVING",
 "optimizationStatus": "CANCELLED",
 "parameters": {},
 "privacyEngineEndpoint": "https://10.0.0.138/privacy_engine/",
 "slots": [

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 58

 {
 "time": "2019-08-24T14:15:22Z"
 }
],
 "timestamp": "2019-08-24T14:15:22Z"
}

Responses

Status Meaning Description Schema

200 OK OK; optimization run successfully aborted. OptimizationDTO

201 Created Created None

401 Unauthorized Unauthorized None

403 Forbidden Forbidden None

404 Not Found Not Found; no optimization with the specified
identifier exists.

None

PUT /optimizations/{optId}/start/wait

Run a previously created and initialized optimization in a synchronized way, waiting for the response.

Parameters

Name In Type Required Description

optId path string true the optimization’s identifier

Example responses

200 Response

{
 "fitness": 0,
 "fitnessFunctionInvocations": 0,
 "optId": "string",
 "optimizedFlightSequence": [
 "string"
],
 "slots": []
}

Note that the return value of a successful execution also contains basic statistical information (fitness,
number of invocations of fitness function for computing fitness values). The synchronous execution of
the Heuristic Optimizer is included for experimentation purposes. In a production version of the

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 59

SlotMachine system, the Heuristic Optimizer would only be invoked using the asynchronous
implementation of the optimization run.

Responses

Status Meaning Description Schema

200 OK OK OptimizationResultDTO

401 Unauthorized Unauthorized None

403 Forbidden Forbidden None

404 Not Found Not Found None

GET /optimizations/{optId}/result

Get the n best solutions found by an optimization run, if available.

Parameters

Name In Type Required Description

optId path string true the optimization’s identifier

limit query integer(int32) false the number of solutions to be returned

Example responses

200 Response

[
 {
 "fitness": 0,
 "fitnessFunctionInvocations": 0,
 "optId": "string",
 "optimizedFlightSequence": [
 "string"
],
 "slots": []
 }
]

Responses

Status Meaning Description Schema

200 OK OK [OptimizationResultDTO]

401 Unauthorized Unauthorized None

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 60

Status Meaning Description Schema

403 Forbidden Forbidden None

404 Not Found Not Found; no result available or optimization
does not exist

None

GET /optimizations/{optId}/stats

Get current statistics for a specific optimization and its results, if available.

Parameters

Name In Type Required Description

optId path string true the optimization’s identifier

Example responses

200 Response

{
 "duration": {
 "nano": 0,
 "negative": true,
 "seconds": 0,
 "units": [
 {
 "dateBased": true,
 "duration": {},
 "durationEstimated": true,
 "timeBased": true
 }
],
 "zero": true
 },
 "initialFitness": 0,
 "iterations": 0,
 "optId": "string",
 "requestTime": "2019-08-24T14:15:22Z",
 "resultFitness": 0,
 "status": "CREATED",
 "timeAborted": "2019-08-24T14:15:22Z",
 "timeCreated": "2019-08-24T14:15:22Z",
 "timeFinished": "2019-08-24T14:15:22Z",
 "timeStarted": "2019-08-24T14:15:22Z"
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 61

Note that the schema of the captured statistics may be revised during the work on the Dashboard
component; the statistics obtained from the Heuristic Optimizer are a data source for the dashboard.
Additional measures may be added, other measures may be dropped.

Responses

Status Meaning Description Schema

200 OK OK OptimizationStatisticsDTO

401 Unauthorized Unauthorized None

403 Forbidden Forbidden None

404 Not Found Not Found None

Schemas

In the following, we describe the schema of the data transfer objects.

SlotDTO

{
 "time": "2019-08-24T14:15:22Z"
}

Name Type Required Restrictions Description

time string(date-time) false none none

OptimizationDTO

{
 "fitnessEstimator": "string",
 "flights": [
 {
 "flightId": "string",
 "margins": {
 "scheduledTime": "2019-08-24T14:15:22Z",
 "timeNotAfter": "2019-08-24T14:15:22Z",
 "timeNotBefore": "2019-08-24T14:15:22Z",
 "timeWished": "2019-08-24T14:15:22Z"
 },
 "scheduledTime": "2019-08-24T14:15:22Z",
 "weightMap": [
 0
]
 }

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 62

],
 "initialFlightSequence": [
 "string"
],
 "optId": "string",
 "optimizationFramework": "string",
 "optimizationMode": "PRIVACY_PRESERVING",
 "optimizationStatus": "CREATED",
 "parameters": {},
 "privacyEngineEndpoint": "string",
 "slots": [
 {
 "time": "2019-08-24T14:15:22Z"
 }
],
 "timestamp": "2019-08-24T14:15:22Z"
}

Name Type Required Restrictions Description

fitnessEstimator string false none none

flights [FlightDTO] false none none

initialFlightSequence [string] false none none

optId string false none none

optimizationFramework string false none none

optimizationMode string false none none

optimizationStatus string false none none

parameters object false none none

privacyEngineEndpoint string false none none

slots [SlotDTO] false none none

timestamp string(date-time) false none none

Property Value

optimizationMode PRIVACY_PRESERVING

optimizationMode NON_PRIVACY_PRESERVING

optimizationStatus CREATED

optimizationStatus INITIALIZED

optimizationStatus RUNNING

optimizationStatus CANCELLED

optimizationStatus DONE

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 63

OptimizationStatisticsDTO

{
 "duration": {
 "nano": 0,
 "negative": true,
 "seconds": 0,
 "units": [
 {
 "dateBased": true,
 "duration": {},
 "durationEstimated": true,
 "timeBased": true
 }
],
 "zero": true
 },
 "initialFitness": 0,
 "iterations": 0,
 "optId": "string",
 "requestTime": "2019-08-24T14:15:22Z",
 "resultFitness": 0,
 "status": "CREATED",
 "timeAborted": "2019-08-24T14:15:22Z",
 "timeCreated": "2019-08-24T14:15:22Z",
 "timeFinished": "2019-08-24T14:15:22Z",
 "timeStarted": "2019-08-24T14:15:22Z"
}

Name Type Required Restrictions Description

duration Duration false none none

initialFitness number(double) false none none

iterations integer(int32) false none none

optId string false none none

requestTime string(date-time) false none none

resultFitness number(double) false none none

status string false none none

timeAborted string(date-time) false none none

timeCreated string(date-time) false none none

timeFinished string(date-time) false none none

timeStarted string(date-time) false none none

Property Value

status CREATED

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 64

Property Value

status IN_PROGRESS

status FINISHED

status ABORTED

TemporalUnit

{
 "dateBased": true,
 "duration": {
 "nano": 0,
 "negative": true,
 "seconds": 0,
 "units": [
 {
 "dateBased": true,
 "duration": {},
 "durationEstimated": true,
 "timeBased": true
 }
],
 "zero": true
 },
 "durationEstimated": true,
 "timeBased": true
}

Name Type Required Restrictions Description

dateBased boolean false none none

duration Duration false none none

durationEstimated boolean false none none

timeBased boolean false none none

MarginsDTO

{
 "scheduledTime": "2019-08-24T14:15:22Z",
 "timeNotAfter": "2019-08-24T14:15:22Z",
 "timeNotBefore": "2019-08-24T14:15:22Z",
 "timeWished": "2019-08-24T14:15:22Z"
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 65

Name Type Required Restrictions Description

scheduledTime string(date-time) false none none

timeNotAfter string(date-time) false none none

timeNotBefore string(date-time) false none none

timeWished string(date-time) false none none

FlightDTO

{
 "flightId": "string",
 "margins": {
 "scheduledTime": "2019-08-24T14:15:22Z",
 "timeNotAfter": "2019-08-24T14:15:22Z",
 "timeNotBefore": "2019-08-24T14:15:22Z",
 "timeWished": "2019-08-24T14:15:22Z"
 },
 "scheduledTime": "2019-08-24T14:15:22Z",
 "weightMap": [
 0
]
}

Name Type Required Restrictions Description

flightId string false none none

margins MarginsDTO false none none

scheduledTime string(date-time) false none none

weightMap [integer] false none none

Duration

{
 "nano": 0,
 "negative": true,
 "seconds": 0,
 "units": [
 {
 "dateBased": true,
 "duration": {
 "nano": 0,
 "negative": true,
 "seconds": 0,
 "units": [],
 "zero": true

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 66

 },
 "durationEstimated": true,
 "timeBased": true
 }
],
 "zero": true
}

Name Type Required Restrictions Description

nano integer(int32) false none none

negative boolean false none none

seconds integer(int64) false none none

units [TemporalUnit] false none none

zero boolean false none none

OptimizationResultDTO

{
 "fitness": 0,
 "fitnessFunctionInvocations": 0,
 "optId": "string",
 "optimizedFlightSequence": [
 "string"
],
 "slots": []
}

Name Type Required Restrictions Description

fitness number(double) false none none

fitnessFunctionInvocations integer(int32) false none none

optId string false none none

optimizedFlightSequence [string] false none none

slots [LocalDateTime] false none none

 Network Management Function

The Network Management Function (NMF) provides information about active regulations and the
current flight list for a given airport. Additionally, this service takes care of validating inputs from
SlotMachine on the network level. The SlotMachine Controller component submits solutions to the
flight prioritization problem as proposed new flight lists to the NMF and receives – if any of the

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 67

proposed new flight lists is accepted by NMF – confirmation about which candidate flight list becomes
the actual new flight list.

GET /active

Check if container is active

Example responses

200 Response

{
 "active": true,
 "auth": false,
 "repos": false,
 "watermark": false,
 "billing": false,
 "scopes": [
 "admin",
 "write",
 "read"
]
}

Responses

Status Meaning Description Schema

200 OK success Inline

Response Schema

Status Code 200

Name Type Required Restrictions Description

» active boolean false none none

» auth boolean false none none

» repos boolean false none none

» watermark boolean false none none

» billing boolean false none none

» scopes [string] false none none

GET /info

container overview

Example responses

200 Response

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 68

{
 "uid": "string",
 "title": "string",
 "image": "string",
 "records": 0
}

Responses

Status Meaning Description Schema

200 OK success Inline

Response Schema

Status Code 200

Name Type Required Restrictions Description

» uid string false none none

» title string false none none

» image string false none none

» records integer true none none

POST /FlightListUpload/{filename}

Upload a flight list response in XML format

Body parameter

file: string

Parameters

Name In Type Required Description

filename path string true none

body body object false none

» file body string(binary) false none

Example responses

200 Response

<?xml version="1.0" encoding="UTF-8" ?>
<FlightList>
 <content>string</content>
</FlightList>

Responses

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 69

Status Meaning Description Schema

200 OK success FlightList

500 Internal Server Error server error None

POST /flightListByAerodrome

configure response to GET /flightListByAerodrome

Parameters

Name In Type Required Description

identifier query string true none

Responses

Status Meaning Description Schema

200 OK success None

500 Internal Server Error server error None

GET /flightListByAerodrome

Get current flight list for an aerodrome

Parameters

Name In Type Required Description

aerodrome query string false aerodrome id (ICAO code)

Example responses

200 Response

<?xml version="1.0" encoding="UTF-8" ?>
<FlightList>
 <content>string</content>
</FlightList>

Responses

Status Meaning Description Schema

200 OK success FlightList

500 Internal Server Error server error None

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 70

POST /flightProposals

Provide list of flight proposals

Body parameter

{
 "controller": "string",
 "regulation": "string",
 "optimizaions": [
 {
 "id": "string",
 "prio": 0,
 "flights": [
 {
 "flight": "string",
 "proposed": 0
 }
]
 }
]
}

Parameters

Name In Type Required Description

body body FlightProposal false none

Responses

Status Meaning Description Schema

200 OK success None

500 Internal Server Error server error None

POST /selectedFlightList

Configure response to POST /flightProposals

Body parameter

{
 "endpoint": "http://controller:8090",
 "optimization_id": "string",
 "solution_id": "string"
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 71

Parameters

Name In Type Required Description

body body object false

» endpoint body string true

» optimization_id body string true

» solution_id body string true

Responses

Status Meaning Description Schema

200 OK success None

500 Internal Server Error server error None

Schemas

In the following, we describe the schema of the data transfer objects.

FlightList

{
 "content": "string"
}

Name Type Required Description

content string false

FlightProposal

{
 "controller": "string",
 "regulation": "string",
 "optimizaions": [
 {
 "id": "string",
 "prio": 0,
 "flights": [
 {
 "flight": "string",
 "proposed": 0
 }
]
 }
]
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 72

Name Type Required Description

controller string false unique string identifying SlotMachine Controller

regulation string false name of regulation

optimizaions [object] false list of optimization proposals

» id string false some text

» prio integer false priority

» flights [object] false list of flights in this proposal

»» flight string false flight number

»» proposed integer false timestamp

 Airspace User

The Airspace User component consists of a REST interface (Section 4.4.1) for interaction with the
Controller and a WebSocket interface (Section 4.4.2) for notifying the AU web app about regulations
and found/accepted solutions.

4.4.1 REST Interface

The AU REST interface is the main component for the AU component to communicate with the
SlotMachine system. AU REST handles authentication and authorization and all types of
communication between AUs and the SlotMachine system.

All requests are checked against a login/token service, i.e., if the user is still logged in and allowed to
send the request.

POST /AURESTService/rejectSolutions

Reject solution(s) provided by the optimization run.

Body parameter

{
 "airlineId": "SWISS",
 "regulationId": "Reg1234",
 "optimizationId": "Opt5690",
 "rejectedSolutions": [
 {
 "airlineId": "SWISS",
 "regulationId": "Reg1234",
 "optimizationId": "Opt5690",
 "solutionId": "1"
 }

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 73

]
}

Parameters

Name In Type Required Description

body body RejectedSolutionListDTO true Reject solution(s) provided by the
optimization run.

Responses

Status Meaning Description Schema

200 OK Resource created string

400 Bad Request Bad Request string

500 Internal Server Error Error during registration! string

default Default The rejection string

POST /AURESTService/registerForRegulation

Register an airspace user (airline) for a regulation type on an airport.

Parameters

Name In Type Required Description

airline query string true The airline identifier

airport query string true The airport identifier

regulationType query string true The regulation type

Responses

Status Meaning Description Schema

200 OK Resource created string

400 Bad Request Bad Request string

500 Internal Server Error Error during registration! string

default Default The registration string

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 74

POST /AURESTService/pushOptimizationFlightList

Send the airspace user’s preferences for each flight that should be part of the optimization.

Body parameter

{
 "requestId": "string",
 "optimizationSession": "string",
 "flights": [
 {
 "flightId": "string",
 "scheduledTime": "2019-08-24T14:15:22Z",
 "priority": 0,
 "notBefore": "2019-08-24T14:15:22Z",
 "notAfter": "2019-08-24T14:15:22Z",
 "timeWished": "2019-08-24T14:15:22Z"
 }
]
}

Parameters

Name In Type Required Description

body body AusPrefFlightList true The airspace user’s preferences for each
flight that should be part of the optimization.

Example responses

200 Response

{
 "regulationId": "string",
 "optimizationId": "0d6b6665-5948-4218-bf74-bb86e549040e",
 "airlineId": "SWR",
 "flights": [
 {
 "flightId": "F01",
 "weightMap": [
 {
 "slotTime": "2019-08-24T14:15:00Z",
 "weight": "1000"
 },
 {
 "slotTime": "2019-08-24T14:20:00Z",
 "weight": "1200"
 },
]
 }

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 75

]
}

Responses

Status Meaning Description Schema

200 OK Resource created WeightMapDTO

400 Bad Request Bad Request string

500 Internal Server Error Error during registration! WeightMapDTO

default Default The registration string

POST /AURESTService/invokeRegulationNotification

A testing service for sending a new regulation notification to the connected Controller via REST
interface.

Parameters

Name Name Name In Type

airline query string true The airline identifier

airport query string true The airport identifer

regulationType query string true The regulation type: DEPARTURE; ARRIVAL, or
EN_ROUTE

regulationId query string true The regulation identifier

Example responses

200 Response

Responses

Status Meaning Description Schema

200 OK Resource created string

400 Bad Request Bad Request string

500 Internal Server Error Error during sending! string

default Default The status. string

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 76

POST /AURESTService/invokeNewRegulation

A testing service for triggering a new regulation notification being sent to the web client on the open
WebSocket connection.

Parameters

Name In Type Required Description

airline query string true The airline identifier

airport query string true The airport identifier

regulationType query string true The regulation type: DEPARTURE, ARRIVAL,
or EN_ROUTE

regulationId query string true The regulation identifier

Responses

Status Meaning Description Schema

200 OK Resource created string

400 Bad Request Bad Request string

500 Internal Server Error Error during sending string

default Default The status. string

POST /AURESTService/callbackEndpoint

The notification endpoint for getting notified by the Controller.

Body parameter

"{...}"

The body may be different types of JSON documents notifying the AU of a change. The body can be a
RegulationNotificationDTO or a SolutionNotificationDTO.

Parameters

Name In Type Required Description

body body string true The notification objects as string representations of JSON
documents.

Responses

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 77

Status Meaning Description Schema

200 OK Resource created string

400 Bad Request Bad Request string

500 Internal Server Error Error during registration string

default Default The status. string

GET /AURESTService/token

Endpoint for checking if the authentication token for an airspace user is valid.

Parameters

Name In Type Required Description

authorization header string true The authentication token

userName query string true The user name

Responses

Status Meaning Description Schema

200 OK Token valid string

400 Bad Request Bad Request string

403 Forbidden Token invalid! string

default Default The auth token. string

GET /AURESTService/getFlightListForOptimization

Get the current flight list for an airline on an airport that can be optimized.

Parameters

Name In Type Required Description

airlineId query string true The airline identifier

airportId query string true The airport identifier

Responses

Status Meaning Description Schema

200 OK Resource created FlightListDTO

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 78

Status Meaning Description Schema

400 Bad Request Bad Request string

500 Internal Server Error Error during registration! FlightListDTO

default Default The FlightList FlightListDTO

GET /AURESTService/authenticate

Endpoint authenication and authorization of an airspace user by providing a basic authorization
header.

Parameters

Name In Type Required Description

authorization header string true Base64 authentication

Responses

Status Meaning Description Schema

200 OK Token created string

400 Bad Request Bad Request string

403 Forbidden Login forbidden string

default Default The auth token. string

GET /AURESTService/actualProvidedSolutions

Get the actual provided solutions for the current optimization run.

Parameters

Name In Type Required Description

optId query string true The identifier of the optimization run

Responses

Status Meaning Description Schema

200 OK Solution(s) provided SolutionListDTO

400 Bad Request Bad Request string

500 Internal Server Error Error during registration SolutionListDTO

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 79

Status Meaning Description Schema

default Default The actual provided Solutions SolutionListDTO

GET /AURESTService/actualAcceptedSolution

Get the actual accepted solutions for the current optimization session.

Parameters

Name In Type Required Description

optId query string true The identifier of the optimization run

Responses

Status Meaning Description Schema

200 OK Solution(s) accepted! SolutionListDTO

400 Bad Request Bad Request string

500 Internal Server Error Error during registration! SolutionListDTO

default Default The actual provided Solutions SolutionListDTO

DELETE /AURESTService/unregisterFromRegulation

Unregister an airspace user (airline) for a regulation type at an airport.

Parameters

Name In Type Required Description

airline query string true The airline identifier

airport query string true The airport identifier

regulationType query string true The type of regulation: DEPARTURE,
ARRIVAL, or EN_ROUTE

Responses

Status Meaning Description Schema

200 OK Resource created string

400 Bad Request Bad Request string

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 80

Status Meaning Description Schema

500 Internal Server Error Error during registration! string

default Default The unregistration string

Schemas

In the following, we describe the schema of the data transfer objects that are exchanged between the
Airspace User REST interface and other components.

RegulationNotficationDTO

{
 "airlineId": "string",
 "airportId": "string",
 "regulationId": "string
}

SolutionNotficationDTO

{
 "optimizationId": "string”,
 "regulationId": "string”,
 "airportId": "string",
 "airlineId": "string",
 "airportId": "string",
 "solutionStatus": "string
}

AusPrefFlightList

{
 "requestId": "string",
 "optimizationSession": "string",
 "flights": [
 {
 "flightId": "string",
 "scheduledTime": "2019-08-24T14:15:22Z",
 "priority": 0,
 "notBefore": "2019-08-24T14:15:22Z",
 "notAfter": "2019-08-24T14:15:22Z",
 "timeWished": "2019-08-24T14:15:22Z"
 }
]
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 81

Name Name Name Type Required

requestId string false none The unique request ID from
getFlightListForOptimization

optimizationSession string false none the optimization’s identifier

flights [PrefFlight] false none The list of Flights (FlightDTO)

PrefFlight

{
 "flightId": "string",
 "scheduledTime": "2019-08-24T14:15:22Z",
 "priority": 0,
 "notBefore": "2019-08-24T14:15:22Z",
 "notAfter": "2019-08-24T14:15:22Z",
 "timeWished": "2019-08-24T14:15:22Z"
}

Name Type Required Description

flightId string false The unique Flight identification

scheduledTime string(date-time) false The slot time of the flight

priority integer(int32) false a numeric priority

notBefore string(date-time) false The UTC time before the flight should
not be scheduled

notAfter string(date-time) false The UTC time after that the flight
should not be scheduled

timeWished string(date-time) false The preferred UTC time of the flight
schedule in

WeightMapDTO

{
 "regulationId": "string",
 "optimizationId": "string",
 "airlineId": "string",
 "flights": [
 {
 "flightId": "string",
 "weightMap": [
 {
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
 }
]
 }

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 82

]
}

Name Type Required Description

regulationId string false the regulation identifier

optimizationId string false the optimization’s identifier

airlineId string false The airline identifier

flights [WeightMapFlightDT
O]

false The weight map for each flight and
slot combination

WeightMapFlightDTO

{
 "flightId": "string",
 "weightMap": [
 {
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
 }
]
}

Name Type Required Description

flightId string false The flight identifier

weightMap [WeightMapObjectDTO] false A weight map assigning a weight/utility to
each slot

WeightMapObjectDTO

{
 "slotTime": "2019-08-24T14:15:22Z",
 "weight": "string"
}

Name Type Required Description

slotTime string(date-time) false The time and date of the slot.

weight string false The assigned weight

Flight

{
 "flightId": "string",
 "keys": {
 "aircraftId": "string",

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 83

 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "string",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
}

Name Type Required Description

flightId string true The flight identifier

keys FlightKey false

aircraftType string false

scheduledTakeOffTime string(date-time) false

estimatedTakeOffTime string(date-time) false

aircraftOperator string false

operatingAircraftOperator string false

slotIssued boolean false

delay integer(int32) false

mostPenalisingRegulation string false

filedRegistrationMark string false

slotSwapCounter SlotSwapCounter false

FlightKey

{
 "aircraftId": "SWR110",
 "aerodromeOfDeparture": "FAOR",
 "nonICAOAerodromeOfDeparture": false,
 "airFiled": false,
 "aerodromeOfDestination": "LOWW",
 "nonICAOAerodromeOfDestination": true,

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 84

 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
}

Name Type Required Description

aircraftId string true The aircraft identifier

aerodromeOfDeparture string true The (ICAO) identifier of
departure aerodrome

nonICAOAerodromeOfDeparture boolean false Whether the departure
aerodrome is not recognized
by ICAO

airFiled boolean false

aerodromeOfDestination string true The (ICAO) identifier of
destination aerodrome

nonICAOAerodromeOfDestination boolean false Whether the destination
aerodrome is not recognized
by ICAO

estimatedOffBlockTime string(date-time) false Estimated time that the
aircraft starts movement
associated with departure

FlightList

{
 "requestReceptionTime": "2019-08-24T14:15:22Z",
 "requestId": "string",
 "optimizationSession": "string",
 "regulationId": "string",
 "currentServerTime": "2019-08-24T14:15:22Z",
 "cutOffTime": "2019-08-24T14:15:22Z",
 "nextOptRun": "2019-08-24T14:15:22Z",
 "slots": [
 {
 "slotTime": "2019-08-24T14:15:22Z"
 }
],
 "flights": [
 {
 "flightId": "string",
 "keys": {
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "string",

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 85

 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "string",
 "operatingAircraftOperator": "string",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
 }
]
}

Name Type Name Required

requestReceptionTime string(date-time) false The time when the getFlightList request has
been answered

requestId string false The unique request identifier

optimizationSession string false the optimization’s identifier

regulationId string false the regulation identifier

currentServerTime string(date-time) false current time on the SlotMachine instance

cutOffTime string(date-time) false latest time the AU can send his preferences

nextOptRun string(date-time) false next time the optimization run is scheduled

slots [Slot] false the available slots for the next optimization
run

flights [Flight] false list of flights that can be part of the
optimization

Slot

{
 "slotTime": "2019-08-24T14:15:22Z"
}

Name Type Required Description

slotTime string(date-time) false The date and time of the slot

SlotSwapCounter

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 86

{
 "currentCounter": 0,
 "maxLimit": 0
}

Name Type Name Description

currentCounter integer(int32) false

maxLimit integer(int32) false

FlightDTO

{
 “flightId”: “string”,
 “keys”: {
 “aircraftId”: “string”,
 “aerodromeOfDeparture”: “string”,
 “nonICAOAerodromeOfDeparture”: true,
 “airFiled”: true,
 “aerodromeOfDestination”: “string”,
 “nonICAOAerodromeOfDestination”: true,
 “estimatedOffBlockTime”: “2019-08-24T14:15:22Z”
 },
 “aircraftType”: “string”,
 “scheduledTakeOffTime”: “2019-08-24T14:15:22Z”,
 “estimatedTakeOffTime”: “2019-08-24T14:15:22Z”,
 “aircraftOperator”: “string”,
 “operatingAircraftOperator”: “string”,
 “slotIssued”: true,
 “delay”: 0,
 “mostPenalisingRegulation”: “string”,
 “filedRegistrationMark”: “string”,
 “slotSwapCounter”: {
 “currentCounter”: 0,
 “maxLimit": 0
 }
}

Name Type Required Description

flightId string false The flight identifier

keys FlightKeyDTO false

aircraftType string false

scheduledTakeOffTime string(date-time) false

estimatedTakeOffTime string(date-time) false

aircraftOperator string false

operatingAircraftOperator string false

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 87

slotIssued boolean false

delay integer(int32) false

mostPenalisingRegulation string false

filedRegistrationMark string false

slotSwapCounter SlotSwapCounterDTO false

FlightKeyDTO

{
 "aircraftId": "string",
 "aerodromeOfDeparture": "string",
 "nonICAOAerodromeOfDeparture": true,
 "airFiled": true,
 "aerodromeOfDestination": "string",
 "nonICAOAerodromeOfDestination": true,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
}

Name Type Required Description

aircraftId string false The aircraft identifier

aerodromeOfDeparture string false

nonICAOAerodromeOfDeparture boolean false

airFiled boolean false

aerodromeOfDestination string false

nonICAOAerodromeOfDestination boolean false

estimatedOffBlockTime string(date-
time)

false

FlightListDTO

{
 "optimization": {
 "regulationId": "LDCTB04D",
 "requestReceptionTime": "2019-08-24T14:15:22Z",
 "requestId": "B2B_CUR:45318",
 "optimizationId": "string",
 "state": "WAIT_FOR_INPUTS",
 "currentServerTime": "2019-08-24T14:15:22Z",
 "cutOffTime": "2019-08-24T14:15:22Z",
 "nextOptimizationRun": "2019-08-24T14:15:22Z"
 },
 "slots": [

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 88

 {
 "slotTime": "2019-08-24T14:15:22Z"
 }
],
 "flights": [
 {
 "flightId": "F1",
 "keys": {
 "aircraftId": "SWR139",
 "aerodromeOfDeparture": "LOWW",
 "nonICAOAerodromeOfDeparture": false,
 "airFiled": true,
 "aerodromeOfDestination": "LSZH",
 "nonICAOAerodromeOfDestination": false,
 "estimatedOffBlockTime": "2019-08-24T14:15:22Z"
 },
 "aircraftType": "A333",
 "scheduledTakeOffTime": "2019-08-24T14:15:22Z",
 "estimatedTakeOffTime": "2019-08-24T14:15:22Z",
 "aircraftOperator": "SWR",
 "operatingAircraftOperator": "SWR",
 "slotIssued": true,
 "delay": 0,
 "mostPenalisingRegulation": "string",
 "filedRegistrationMark": "string",
 "slotSwapCounter": {
 "currentCounter": 0,
 "maxLimit": 0
 }
 }
]
}

Name Type Required Description

optimization OptimizationDTO false The optimization information

slots [SlotDTO] false The available slots for the
optimization

flights [FlightDTO] false The flights for the optimization

OptimizationDTO

{
 "regulationId": "string",
 "requestReceptionTime": "2019-08-24T14:15:22Z",
 "requestId": "string",
 "optimizationId": "string",
 "state": "WAIT_FOR_INPUTS",
 "currentServerTime": "2019-08-24T14:15:22Z",

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 89

 "cutOffTime": "2019-08-24T14:15:22Z",
 "nextOptimizationRun": "2019-08-24T14:15:22Z"
}

Name Type Required Description

regulationId string false The regulation identifier

requestReceptionTime string(date-time) false The time when the
getFlightList request has be
answered

requestId string false the unique request id

optimizationId string false the optimization identifier

state string false The state of the
optimization:
WAIT_FOR_INPUTS,
CUT_OFF_TIME_REACHED,
OPTIMIZATION_RUNNING,
WAITING_FOR_REJECTS,
WAITING_FOR_NM_
CONFIRMATION

currentServerTime string(date-time) false the current time on the
SlotMachine instance

cutOffTime string(date-time) false latest time the AU can send
his preferences

nextOptimizationRun string(date-time) false the time when the next
optimization is starting

SlotDTO

{
 "slotTime": "2019-08-24T14:15:22Z"
}

Name Type Required Description

slotTime string(date-time) false

SlotSwapCounterDTO

{
 "currentCounter": 0,
 "maxLimit": 0
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 90

Name Type Required Description

currentCounter integer(int32) false

maxLimit integer(int32) false

SolutionDTO

{
 "regulationId": "string",
 "optimizationId": "string",
 "solutionId": "string",
 "priority": 0,
 "flights": [
 {
 "flightId": "string",
 "slotTime": "2019-08-24T14:15:22Z"
 }
]
}

Name Type Required Description

regulationId string false the regulation identifier

optimizationId string false the optimization identifier

solutionId string false the unique id of the solution

priority integer(int32) false the priority of this solution

flights [SolutionFlightDTO] false flight information for the solution

SolutionFlightDTO

{
 "flightId": "string",
 "slotTime": "2019-08-24T14:15:22Z"
}

Name Type Required Description

flightId string false The flight identifier

slotTime string(date-time) false The date and time of the slot

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 91

SolutionListDTO

{
 "regulationId": "string",
 "optimizationId": "string",
 "currentServerTime": "2019-08-24T14:15:22Z",
 "rejectUntil": "2019-08-24T14:15:22Z",
 "solutions": [
 {
 "regulationId": "string",
 "optimizationId": "string",
 "solutionId": "string",
 "priority": 0,
 "flights": [
 {
 "flightId": "string",
 "slotTime": "2019-08-24T14:15:22Z"
 }
]
 }
]
}

Name Type Required Description

regulationId string false the regulation identifier

optimizationId string false the optimization identifier

currentServerTime string(date-time) false current time on the SoltMachine instance

rejectUntil string(date-time) false the time until a reject can be send

solutions [SolutionDTO] false the solutions to be rejected

4.4.2 WebSocket Interface

The WebSocket interface serves the AU REST component to notify the AU web app about issued
regulations, proposed new flight lists, and the flight list finally accepted by the NMF. Exchange of
heartbeat messages between AU REST and AU web app guarantees a stable connection.

The Websocket Endpoint is reachable via /AUClientRestWSEndpoint on each AU instance.

Heartbeat is initiated by the AU web app by sending a HeartbeatRequest message, and the AU REST
component returns a HeartbeatResponse message.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 92

HeartbeatRequest

{
 “requestId”:<uuid>,
 “mutation”:“HB_REQUEST”,
 “sendTime”:<UTCDateTime>
}

HeartbeatResponse

{
 “requestId”:<uuid>,
 “mutation”:“HB_RESPONSE”,
 “sendTime”:<UTCDateTime>,
 “state”:<CONNECTED>
}

In the following, we define the messages sent from the AU REST component to the AU web app.

NewRegulationNotification:

{
 “mutation”:“NEW_REGULATION_AVAILABLE”,
 “airspaceUser”:<aispaceUserId>
 “airport”:<airport>,
 “regulationId”:<regulationId>
}

NewProposedSolutionsNotification:

{
 “mutation”:“NEW_PROPOSED_SOLUTIONS_AVAILABLE”,
 “optimizationSessionId”:<optimiziationSessionId>
}

NewAcceptedSolutionsNotification:

{
 “mutation”:“NEW_ACCEPTED_SOLUTION_AVAILABLE”,
 “optimizationSessionId”:<optimiziationSessionId>
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 93

 Dashboard

We do not intend to implement a web service interface for accessing the Dashboard component.
Rather, the Dashboard component is a user interface that retrieves different metric data to be
displayed from the interfaces provided by other components, particularly the Heuristic Optimizer’s
returned statistics about optimizations. The main component to provide aggregated data for the
dashboard, however, will be the Controller. The definition of those interfaces and interaction will
depend on the further development and will be specified and finalized at a later point.

 Privacy Engine and MPC Nodes

PUT /sessionClear

Create a new session using a clear-text weight-map. The weight-map is a rectangular matrix (list of
lists)

Body parameter

[[10,0,0],[0,8,4],[0,3,9]]

Parameters

Name In Type Required Description

body body array[array] false none

Responses

Status Meaning Description Schema

201 Created Successful Response Inline

400 Bad Request Bad Request Error

422 Unprocessable Entity Validation Error HTTPValidationError

500 Internal Server Error Internal Server Error Error

GET /nodes

Get a list of MPC nodes

Responses

Status Meaning Description Schema

200 OK Successful Response Inline

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 94

GET /status

Get the current status of the Privacy Engine.

Responses

Status Meaning Description Schema

200 OK Successful Response Inline

503 Service Unavailable Service Unavailable Error

PUT /sessionSecret

Create a new session using secret-shared weight-maps (one for each MPC node). The weight-map is a
dictionary, containing for each MPC node (“peer”) a rectangular matrix (list of lists). The elements
(weights wij) are encoded (secret shared) for each MPC node and encrypted under the public key of the
respective MPC node.

Body parameter

{
 "A": [[<<w11 encoded for A> encrypted under pkA>,<<w12 … > … >,< … >],
 [<<w21 encoded for A> encrypted under pkA>,<<w22 … > … >,< … >],
 [<<w31 encoded for A> encrypted under pkA>,<<w32 … > … >,< … >],
 "B": […],
 "C": […]
}

Parameters

Name In Type Required Description

body body object false none

» additionalProperties body [array] false none

Responses

Status Meaning Description Schema

201 Created Successful Response Inline

400 Bad Request Bad Request Error

422 Unprocessable Entity Validation Error HTTPValidationError

500 Internal Server Error Internal Server Error Error

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 95

PUT /computeFitnessClear

Return a clear-text fitness value for a given list of indices. For a weight map [[12, 13], [23, 34]], an input
of [0, 1] should return 46. [1, 0] should return 36, and any other input should return an error.

Body parameter

[0,1]

Parameters

Name In Type Required Description

body body array[integer] false none

Responses

Status Meaning Description Schema

200 OK Successful Response integer

400 Bad Request Bad Request Error

422 Unprocessable Entity Validation Error HTTPValidationError

500 Internal Server Error Internal Server Error Error

PUT /computePopulationOrder

Return the maximum fitness value and an ordered list of configurations. For a weight-map [[12, 13],
[23, 34]], an input of [[0, 1], [1, 0]] should return a maximum of 46 and a list [0, 1].

Body parameter

[0,1]

Parameters

Name In Type Required Description

body body array[array] false none

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 96

Example responses

200 Response

{
 "maximum": 0,
 "order": [
 0
]
}

Responses

Status Meaning Description Schema

200 OK Successful Response MaxOrderedResponse

400 Bad Request Bad Request Error

422 Unprocessable Entity Validation Error HTTPValidationError

500 Internal Server Error Internal Server Error Error

PUT /computeClearing

Return the calculated transactions of tokens between flights for a given final sequence.

Body parameter

[0,1]

Parameters

Name In Type Required Description

body body array[integer] false none

Example responses

200 Response

{
 "values": [
 0
]
}

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 97

Responses

Status Meaning Description Schema

200 OK Successful Response ClearingResponse

400 Bad Request Bad Request Error

422 Unprocessable Entity Validation Error HTTPValidationError

500 Internal Server Error Internal Server Error Error

PUT /

Encode

Secret-share a weight-map Input is a rectangular matrix Output is a map from ‘ ’, ‘B’, ‘C’ to shares of
the input weight-map

Body parameter

[]

Parameters

Name In Type Required Description

body body array[array] false none

Example responses

200 Response

{
 "property1": [
 [
 0
]
],
 "property2": [
 [
 0
]
]
}

Responses

Status Meaning Description Schema

200 OK Successful Response Inline

422 Unprocessable Entity Validation Error HTTPValidationError

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 98

Response Schema

Status Code 200

Response Encode Put

Name Type Required Restrictions Description

additionalProperties [array] false none none

Schemas

In the following, we describe the schema of the data transfer objects.

ClearingResponse

{
 "values": [
 0
]
}

Name Type Required Restrictions Description

values [number] true none none

Error

{
 "code": 0,
 "message": "string"
}

Name Type Required Restrictions Description

code integer false none none

message string false none none

HTTPValidationError

{
 "detail": [
 {
 "loc": [
 "string"
],
 "msg": "string",
 "type": "string"
 }

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 99

]
}

Name Type Required Restrictions Description

detail [ValidationError] false none none

MaxOrderedResponse

{
 "maximum": 0,
 "order": [
 0
]
}

Name Type Required Restrictions Description

maximum integer false none none

order [integer] false none none

ValidationError

{
 "loc": [
 "string"
],
 "msg": "string",
 "type": "string"
}

Name Type Required Restrictions Description

loc [string] true none none

msg string true none none

type string true none none

 Blockchain, Credit Wallets, and Wallet Management

The blockchain is used mainly for auditability purposes, to provide transparency for the participating
AUs. The Us’ credit balances are periodically pushed to the blockchain in clear text for any AU to see,
but not in real-time. In the following, we first define the interfaces for writing to the blockchain before
discussing some options for the Credit Wallets and Wallet Management, which at this stage of the
development are not yet finally specified.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 100

4.7.1 Blockchain

Each blockchain application provides an interface for basic querying. Furthermore, the blockchain
application allows for the creation of a transaction on the blockchain in order to update the credit
balances. Only the Credit Management component can update the credit balances since that function
is protected and tied to the Credit Management account. The credit balances can be queried by
everyone who has access to a blockchain client.

POST /set_credits

Sets the current credit balances.

Body parameter

[
 {
 "participant": "SWISS",
 "balance": 100
 }
]

Parameters

Name In Type Required Description

body body array[object] true The specification of the credit balance per participant.

Responses

Status Meaning Description Schema

200 OK Successful Response Inline

400 Bad Request Bad Request Error

422 Unprocessable Entity Validation Error HTTPValidationError

500 Internal Server Error Internal Server Error Error

GET /credit

Queries the credit balances for all participants. The output is paginated, i.e., will be returned on multiple
page if the result would be long. Pagination options can be set using the parameters.

Parameters

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 101

Name In Type Required Description

pagination.key query byte true

pagination.offset query uint64 true

pagination.limit query uint64 true

pagination.countTotal query boolean true The number airspace user balances per
page.

pagination.reverse query boolean true

Responses

Status Meaning Description Schema

200 OK Successful Response Inline

400 Bad Request Bad Request Error

422 Unprocessable Entity Validation Error HTTPValidationError

500 Internal Server Error Internal Server Error Error

GET /credit/{$participant}

Queries the credit balance of a particular participant.

Parameters

Name In Type Required Description

participant path string true The id of the airspace user that the credit
balance should be retrieved for.

Responses

Status Meaning Description Schema

200 OK Successful Response Inline

400 Bad Request Bad Request Error

422 Unprocessable Entity Validation Error HTTPValidationError

500 Internal Server Error Internal Server Error Error

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 102

4.7.2 Credit Wallets and Wallet Management

The Wallet Management will either be realized as a module (subcomponent) of the Controller or runs
in a separate container. In the latter case, the Controller would interact with the Controller via a REST
interface. The Credit Wallets could be realized using a database management system, e.g., a relational.
In that case, rather than using a REST interface, the Wallet Management could interact with the Credit
Wallets using the database management system’s update facility, e.g., SQL INSERT/UPDATE
statements via JDBC connection.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 103

 Sequence Diagrams

This chapter defines the data flows between the functional components described in Chapter 3.

 Controller and Network Management Function

The sequence diagram below illustrates the interaction between the Controller component (see
Section 3.3) and simulated Network Management Functions (Functional Components section 3.2), as
well as a Test Engineer specifying how NMF should response to requests from the Controller.

Figure 7. Interaction between Controller and Network Management Functions

 Controller and Airspace User

Figure 8 first illustrates how the AU components are initialized and registered for notifications with the
Controller. For informing the AU web app that new information is available, the AU REST component
employs a WebSocket connection, which the AU web app initiates. In order to keep the WebSocket
connection open, a heartbeat is regularly sent from the web app to the REST endpoint, which responds
with an acknowledgment. By regularly sending a heartbeat message, the AU web app can constantly
check if the connection is still open and sending messages is possible.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 104

Figure 8 then illustrates how the AU REST component is responsible for handling communication
between AU and the Controller. For the communication between the AU REST and Controller, the HTTP
protocol is used. The AU REST component accesses the Controller’s REST endpoint. The AU REST
component, in turn, provides a dedicated REST endpoint (callbackEndpoint) for the Controller to
submit notifications. When the AU subscribes to receiving notifications about airport regulations, the
callbackEndpoint is registered with the Controller.

As soon as a regulation is available and the regulation meets the criteria of a registration, i.e., the
registration is for the same regulation type and airport, the Controller sends a
RegulationNotificationDTO message to the registered AU REST component, which forwards the
notification via the WebSocket connection to the AU web app. The web app displays information about
the regulation, requesting the flight list for that regulation from the AU REST component, which
forwards the request to the Controller. The Controller returns the flight list for the airspace user to the
AU REST interface, which forwards the flight list to the web app, which displays the flight list. The AU
may then fill in the preferences (TimeWished, NotBefore, NotAfter, Priority).

When all preferences for flights are filled in, an operator from the AU can submit the preferences to
the AU REST component, which computes the weights, creating the weight map. In privacy-preserving
mode, the weights are encrypted and submitted in encrypted form to the Controller. To this end, the
AU REST component uses an encoding service, which can be hosted on the U’s premises (not shown
in Figure 8).

As soon as an optimization run has finished, the Controller informs the AU REST component about the
availability of proposed solutions (Figure 9). The AU REST component forwards the notification via the
open WebSocket connection to the AU web app, which triggers the loading of the proposed flight lists
to be displayed on the AU web app so that the U’s operator can see and compare the results. All
proposed solutions that do not meet the operator’s criteria can be rejected. ll solutions that are not
rejected will be submitted by the Controller to the NMF for approvement.

When there is a solution accepted by the NMF, the Controller notifies the AU REST component via the
WebSocket connection and the AU web app loads the accepted solution from the Controller via the
AU REST interface.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 105

Figure 8. Participation of AU in an optimization run

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 106

Figure 9. Retrieval of flight list by AU after an optimization run

 Controller, Heuristic Optimizer, Privacy Engine, and MPC Nodes

Figure 10 illustrates the interaction flow of Controller and Heuristic Optimizer on the one hand as well
as Privacy Engine and the MPC nodes on the other hand. The Controller sends the encrypted weights
submitted by the AUs to the Privacy Engine, which in turn forwards the settings to the different MPC
nodes. The Controller then initializes an optimization run in the Heuristic Optimizer and starts the
optimization run. The optimization run is an iterative process, the evolutionary algorithm generating
in each iteration step a population of flight lists, which are submitted to the Privacy Engine for
evaluation. The Privacy Engine submits the data to the MPC nodes for computation, which ultimately
produces a ranked list of the input flight lists along with the maximum fitness value in the population.
The Heuristic Optimizer employs the feedback from the Privacy Engine to find new solutions. After the
specified abort condition is satisfied, the Heuristic Optimizer stops the optimization run. The Heuristic

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 107

Optimizer can then obtain the results. There is no notification from Heuristic Optimizer to Controller
once the run has finished due to the following reasons. First, the Controller can configure the abortion
criteria. Second, the Heuristic Optimizer allows for the abortion of an optimization run and will still
return a result. The Heuristic Optimizer also allows to retrieve intermediate results. So the Controller
should specify a time limit and after that time has passed should just retrieve the result available at
that time. Notification is thus not necessary.

Figure 10. Interaction between Controller, Heuristic Optimizer, Privacy Engine, and MPC nodes when
conducting an optimization run

The Privacy Engine will also provide a non-privacy-preserving mode for testing purposes. In this non-
privacy-preserving mode, unencrypted weights are submitted as input but the remainder of the
interaction flow between Privacy Engine and MPC nodes stays the same.

 Controller, Wallet Management and Blockchain

Different market mechanisms will require different clearing mechanisms, which in turn require
different choices regarding the architecture. On the one hand, SM1 defined in D2.3 – Business
Concepts [2] does not require a Wallet Management component. However, when realizing SM1, a
different clearing mechanism would have to be implemented. On other hand, SM2 and SM3 rely on
credits instead of real-world currency. Since airlines are reluctant to participate in market which

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 108

involves exchange of real-world currency (see requirement fair_3 in D2.1 [1]), we will focus on a credit-
based market mechanism. In the following, we describe the interaction between Controller, Wallet
Management, and Blockchain. Note, however, that the following describes the current state of our
research, which is still ongoing. The final design may, therefore, be subject to change when we conduct
additional experiments and receive stakeholder feedback.

Figure 11. Interaction between Wallet Management, Privacy Engine, Wallets, and Blockchain

Figure 11 shows one proposal for handling the clearing process in the SlotMachine system. The Wallet
Management requests the clearing for a certain optimization run from the Privacy Engine. The Privacy
Engine computes amounts of credits to be moved between wallets, using the MPC nodes (not shown),
based on the previously submitted AU preferences for that optimization run. The Wallet Management
component then updates the wallet accordingly; note that the precise interface has not been specified
yet and is still subject to discussion. After several optimization runs, the Wallet Management
component also pushes the credit balances to the blockchain, in clear text, so that each AU may also
view the credit balance of other AUs, in order to increase trust in the fairness of the system.

We also consider other proposals for incorporating the blockchain. For example, zero-knowledge
proofs could be incorporated, with the Privacy Engine pushing directly to the blockchain in order to
make the system auditable in real-time. Wallet Management could also be included in the Privacy
Engine altogether. Those design decisions are still subject to further experimentation.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 109

 Experimental Testing

This chapter describes scope, setup, and results of the demonstrator developed in the course of the
project. Based on the requirements described in D2.1 and D2.3 relevant subsets were selected,
implemented, and tested as described below.

 Test Setup

The following demonstrator are evaluated:

• Non-privacy-preserving demonstrator

• Privacy-preserving demonstrator

• Privacy-preserving demonstrator with credit handling

See section 6.2 Test Cases for a detailed description of Test Cases that are used to evaluate the various
demonstrators.

The following deployment scenarios are considered for the demonstrator evaluation:

• Single instance hosted by Eurocontrol (also called “Centralized Environment”)

• Multiple instances hosted at airports or ANSPs (also called “Hybrid Environment”)

• Decentralized deployment among Airspace Users (also called “Decentralized Environment”)

Finally, concrete data sets are used in the evaluation process of demonstrators and these data sets are
made available according to Data Management Plan deliverables (D1.3, D1.6, D1.7):

• Good Cases

• Bad Cases

• Real World Cases provided by SWISS

• NM B2B IF (Network Manager Business-to-Business Interface): implements the
FlightListByAerodrome Request/Response flow

While the real-world cases provided by SWISS restrict to a certain regulation Good and Bad Cases

 Test Cases

The functionality of SlotMachine was tested with the following End-to-End tests in the various
implementations.

6.2.1 Non-privacy-preserving Demonstrator

The following test steps compromise the non-privacy-preserving demonstrator testing:

Prerequisites:

• these services must be up and running, and version documented for a test run:
o Controller
o NMF (service simulating Network Manager)
o AU REST

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 110

o Heuristic Optimizer
o Privacy Engine with MPC Nodes and using unencrypted weights

• AU web app

Tests:

1. Register AU Clients at SlotMachine Instance

• Login at AU web app

• Demonstrate connection to Controller

2. Connect SlotMachine to NMF to receive regulations

• Verify that Controller has NMF instance and regulation specified on start up

• Verify regular and automatic requests from the Controller to NMF

3. Activate regulation provided by NMF

• Manually trigger activation of a regulation

• Verify Controller receives active regulation

• Verify Controller forwards request to AU

4. Collect inputs from AU

• Verify AU web client displays active regulation

• Enter data to participate in an optimization run

• Submit preferences

• Verify confirmation from Controller

5. Optimize inputs from AU

• Verify Controller forwarded initial configuration and AU preferences to Heuristic
Optimizer

• Verify Heuristic Optimizer generates a list of possible flight lists using Privacy Engine
(using unencrypted weights)

• Verify Heuristic Optimizer sends results (list of possible Flight Prioritization Solutions)
to Controller

6. Send optimized results to NMF

• Verify Controller receives list of possible Flight Prioritization Solutions from Heuristic
Optimizer

• Verify Controller forwards list of possible Flight Prioritization Solutions to NMF

7. Distribute selected optimization from NMF to AUs

• Verify NMF selects and sends Flight Prioritization Solution to Controller

• Verify Controller informs all effected AUs about Flight Prioritization Solution

• Verify AU web client displays Flight Prioritization Solution

6.2.2 Privacy-preserving Demonstrator

The following test steps compromise the privacy-preserving Demonstrator testing:

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 111

Prerequisites:

• these services must be up and running, and version documented for a test run:
o Controller
o NMF (service simulating Network Manager)
o AU REST (at least 2 instances with one instance simulating an AU; the other instance

receives input from the AU web client)
o PE Encoder for each Airspace User
o Heuristic Optimizer
o Privacy Engine and MPC Nodes
o Dashboard

• Web application for AU Client

Tests:

1. Register AU Clients at SlotMachine Instance

• Login at AU web client

• Demonstrate connection to Controller at AU REST instance #1

• Verify AU REST instance #2 simulating an AU is connected to Controller

2. Connect SlotMachine to NMF to receive regulations

• Verify that Controller has NMF instance and regulation specified on start up

• Verify regular and automatic requests from the Controller to NMF

3. Activate regulation provided by NMF

• Verify NMF has a list of different regulations available

• Manually trigger activating a specific regulation

• Verify Controller receives active regulation

• Verify Controller forwards requests to all affected AUs

• Verify Dashboard shows active regulation

4. Collect inputs from AUs

• Verify AU #1 web client displays active regulation

• Enter data to participate in Slot auction

• Verify that AU preferences are encryptedSubmit preferences from AU REST #1

• Verify confirmation from Controller

• Verify AU REST #2 submits preferences to Controller

• Verify Dashboard shows number of participating AUs in current regulation

5. Optimize inputs from AUs

• Verify Controller forwarded initial configuration and both AU preferences to Heuristic
Optimizer

• Verify Heuristic Optimizer only starts optimization after receiving all AU preferences

• Verify Heuristic Optimizer uses Privacy Engine for processing AU preferences

• Verify Heuristic Optimizer generates a list of valid Flight Prioritization Sessions

• Verify Heuristic Optimizer sends results (list of valid Flight Prioritization Sessions) to
Controller

6. Send optimized results to NMF

• Verify Controller receives list of valid Flight Prioritization Solutions

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 112

• Verify Dashboard displays number of Flight Prioritization Solutions for active
regulation

• Verify Controller forwards list of valid Flight Prioritization Solutions to NMF

7. Distribute selected optimization from NMF to AUs

• Verify NMF receives valid optimization proposals

• Verify NMF selects and sends Flight Prioritization Solution to Controller

• Verify Controller informs all effected AUs about Flight Prioritization Solution

• Verify Dashboard displays overall gain from Flight Prioritization Solution

• Verify AU web client displays Flight Prioritization Solution

6.2.3 Privacy-preserving Demonstrator with Credit Handling

The following test steps compromise the privacy-preserving demonstrator with credit handling:

Prerequisites:

• these services must be up and running, and version documented for a test run:
o Controller
o NMF (service simulating Network Manager)
o AU REST (at least three instances with at least two instances simulating AUs; the other

instances receive input from AU web clients)
o PE Encoder for each Airspace User
o Heuristic Optimizer
o Privacy Engine and MPC Nodes
o Blockchain
o Overview Dashboard
o AU Dashboard

• Web applications for
o AU Clients
o Airports

Tests:

1. Register AU Clients at SlotMachine Instance

• Login at AU web clients

• Demonstrate connections to Controller at AU REST

• Verify AU REST simulating AUs are connected to Controller

• Verify AU Dashboards show information of respective AU

• Verify registration is documented on blockchain

2. Connect SlotMachine to NMF to receive regulations

• Verify that Controller has NMF instance on start up

• Configure regulation for relevant for test run

• Verify regular and automatic requests from the Controller to NMF

• Verify Overview Dashboard display information for SlotMachine instance

• Verify NMF connection is documented on blockchain

3. Activate regulation provided by NMF

• Verify NMF has a list of different regulations available

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 113

• Manually trigger activating a specific regulation

• Verify Controller receives active regulation

• Verify Controller forwards requests and current optimization session information to
all affected AUs

• Verify Overview Dashboard shows active regulation

• Verify regulation status change is documented on blockchain

4. Collect inputs from AUs

• Verify AU web clients display active regulation

• Enter data in each AU web client to participate in slot auction

• Verify that AU preferences are encrypted

• Submit preferences from AU web clients in encrypted format

• Verify confirmation from Controller

• Verify AU REST instances submit preferences to Controller

• Verify Overview Dashboard shows number of participating AUs in current regulation

• Verify all AU inputs (partly encrypted) are documented on blockchain

5. Optimize inputs from AUs

• Verify Controller forwarded initial configuration and all available AU preferences to
Heuristic Optimizer at given time

• Verify Heuristic Optimizer starts optimization according to optimization session
information

• Verify Heuristic Optimizer uses Privacy Engine and MPC nodes for processing AU
preferences

• Verify Privacy Engine validates AU input

• Verify Heuristic Optimizer generates a list of valid flight lists

• Verify Heuristic Optimizer sends results (list of valid flight lists) to Controller

• Verify Heuristic Optimizer operations are documented on blockchain

6. Controller processes flight lists (solutions from optimization run)

• Verify Controller receives list of valid flight lists

• Verify Overview Dashboard displays number of Flight Prioritization Solutions for active
regulation

• Verify in credit wallet manager that necessary credits from each AU are available

• Verify Heuristic Optimizer results and credit verification are documented on
blockchain

• Verify Controller informs all effected AUs and Airports about Flight Prioritization
Solutions

7. Check Veto from AUs and Airport

• Verify AUs and Airports request current Flight Prioritization Solutions

• Verify AUs and Airports can veto individual items in Flight Prioritization Solutions

• Verify vetoes are documented on blockchain

• Verify Controller sends only Flight Prioritization Solutions that are not vetoed to NMF

8. Send optimized results to NMF

• Verify Controller receives list of valid Flight Prioritization Solutions

• Verify submitted Flight Prioritization Solutions are documented on blockchain

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 114

• Verify Overview Dashboard displays number of Flight Prioritization Solutions for active
regulation

• Verify Controller forwards list of valid Flight Prioritization Solutions to NMF

9. Distribute selected optimization from NMF to AUs

• Verify NMF receives valid optimization proposals

• Verify NMF selects and sends Flight Prioritization Solution to Controller

• Verify Controller informs all effected AUs about Flight Prioritization Solution

• Verify Overview Dashboard displays overall gain from Flight Prioritization Solution

• Verify AU Dashboard shows updated credit information

• Verify AU web client displays Flight Prioritization Solution

 Test Runs

In End-to-End tests concrete scenarios are evaluate based on the Test Cases described in the previous
section. The following template is used to document Test Runs and results will be available in
Deliverable 5.1:

Memo

 Author: [N.N.]
Date:
 [YYYY/DD/M
M]

Subject: Results of Test Run on [date]

Configuration & Prerequisites

Test system: [test system in use (e.g, local deployment, Kubernetes cluster)]

Services and current images:

• [name of component: reference to Docker image]

Datasets:

• [description of dataset and relevant properties for test run]

Test cases: [reference to class of test cases as described in section 7.2]

Services up and running / auxiliary links:

• [List of services and configuration including tests how initial functionality was evaluated /
smoke test]

• [List of UI clients including credentials]

[X. Enumerated List of Test Cases (number of successful tests/overall test number)]

• [Test Step – Test Result (OK / NOK)]

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 115

Observations

Test Run Summary: [number of successful tests/overall test number]

[each component]

• [findings (bugs, comments)]

-- End of Memo –

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 116

 Conclusions

This document provided a first comprehensive design of the SlotMachine system. The design is based
on the concept of a microservice architecture in order to allow for horizontal scaling and distributed
processing in the cloud; where possible, open technologies shall be used to build the platform. In
particular, this document describes the main components of the SlotMachine system as well as the
interfaces of these components along with the interaction between the components in form of UML
sequence diagrams. Some of the design decisions are deferred to later stages in the project, in
particular those related to credit handling as well as the communication between Privacy Engine and
MPC nodes. The former is dependent on the market mechanisms and also requires further
experimentation. Likewise, the latter is still subject to further experimentation. Nevertheless, this
document provides a good basis for further implementation and experimentation in the course of the
SlotMachine project.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 117

 References

[1] SES R, “D2.1 - Requirements Specification,” SlotMachine, 890456, 2021.

[2] SES R, “D2.3 - Business Concepts,” SlotMachine, 890456, 2021.

[3] SES R, “D3.2 - Specification of the rivacyEngine Component,” SlotMachine, 890456, 2021.

[4] SES R, “D4.2 - Specification of Evolutionary lgorithm,” SlotMachine, 890456, 2021.

[5] SES R, “D5.1 - SlotMachine latform Demonstrator,” SlotMachine, 890456, 2021.

[6] S. Allamaraju, RESTful web services cookbook: solutions for improving scalability and simplicity,
O'Reilly, 2010.

[7] EUROCONTROL, NM 25.0 - NM B2B Reference Manuals - Flight-Services, Brussels: EUROCONTROL,
2021.

[8] SES R, “D4.1 - Report on State of the rt of Relevant Concepts,” SlotMachine, 890456, 2021.

[9] SES R, “D3.1 - Report on State of the rt of Relevant Concepts,” SlotMachine, 890456, 2021.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 118

Appendix A T m G y

Term Definition

Airport slot
Permission to operate a service at a given time (with regard to flight

arrivals and departures).

Airspace User (AU) Airlines and low volume users (LVUC) including Business aviation.

Air traffic flow

management (ATFM)

slot

ATFM departure slot, assigned tactically by the Network Manager to

manage congestion.1

Baseline Delay
Amount of delay a flight or group of flights would be assigned if no

UDPP prioritisation were applied.

Cancellation
A flight is cancelled if it is not operated (usually reallocating the

passengers to other flights). See also ‘suspension’.

Capacity

Maximum number of flights that can enter into a sector or airport per

unit of time (usually 1 hour, but can be defined for any time-window

length, e.g., 15 minutes).

Capacity Constrained

Situation

A period of capacity and demand imbalance in which the capacity

reduction and the resulting excess demand causes stress in the ATFM

slot allocation process, relative to that allocated previous to the

imbalance.

Capacity surplus

Difference between capacity and demand when the available capacity

is enough to allocate the actual demand for a given period of time and

there is still room to potentially allocate a higher number of flights.

Cost of delay
Economic cost incurred by an AU due to the delay experienced by a

flight.

Credit
For ease of reading, in this document, the term ‘credit’ will often be

used as a substitute for ‘Delay Credit’.

Delay
The difference between the ATFM slot and the scheduled time of

departure.

1https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:tr0032&from=EN

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=LEGISSUM:tr0032&from=EN

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 119

Term Definition

Delay Credit

Unit of the virtual currency (i.e. credits) as an expression of the value

generated to other users (positive externalities) or the loss caused

(negative externalities) in terms of delay.

Demand

Total number of flights that plan to enter into a sector or airport in a

given unit of time (usually defined for 1 hour but can be also defined

for any time-window length, e.g. 15 minutes).

Equity

Equity, measures how uniformly the distribution of the good is

performed, that is, without taking into account individual satisfaction

thresholds.

Excess demand
Difference between demand and capacity when the available capacity

is not enough to allocate the demand for a given period of time.

Externalities

Collateral effects caused by the decision/action of an AU regarding the

usage (or non-usage) of a certain slot. When such decisions change

(limiting or expanding), it allows other AU to use the same or other

slots.

Fairness

Fairness can be defined as the quality of distributing something

among a set of individuals in a manner such that each receives a share

that fulfils its individual satisfaction threshold. In order to measure

fairness objectively, it is essential to agree on a common way to

quantify such individual satisfaction thresholds.

Flight list A sequence of flights.

Flight prioritization

session

A group of departing aircrafts in a certain time span that is optimized

for their starting sequence based on AU inputs. Also often referred to

as optimization session.

Flight prioritization

(solution)

Best possible solution found by SlotMachine within a flight

prioritization exchange session.

Hotspot

Similar to CCS, but while CSS refers to periods of demand and capacity

imbalance at airports, HSPT refers to periods of demand and capacity

imbalance in en-route sectors.

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 120

Term Definition

Multiparty Computation

(MPC)

Secure multiparty computation (MPC / SMPC) is a cryptographic

protocol that distributes a computation across multiple parties where

no individual party can see the other parties’ data.2

Near on-time Delay higher than 0’ but ≤ 15’ for an AU.

Network Manager (NM)
Network Manager - the function is currently attributed to ECTL. The

B2B services are provided by the NM.

Network Management

Functions (NMF)

This is the set of functions for managing the safety of ATM network

operations that are either delegated to other ATM actors such as local

DCB (Demand-Capacity Balancing) by Flow Manager (FMP) or at

Airport; AUs; or performed by the Network Manager itself.

Network Manager
The body entrusted with the tasks necessary for the execution of the

functions referred to in Article 6 of Regulation (EC) No 551/2004.3

On-time Delay = 0’ for an U.

Operational Service and

Environment

Description (OSED)

The Operational Service and Environment Definition (OSED)

document describes the operational concept defined in the Detailed

Operational Description (DOD) in the scope of its Operational Focus

Area (OFA). It defines the operational services, their environment,

scenarios and use cases and requirements.4

Protection

A flight is protected if the AU sends a request (manually or through

automated means) to allocate the flight to a particular slot, usually

between the scheduled time (i.e., zero delay) and the slot assigned by

FPFS (i.e., the Baseline Delay). The flight is actually protected only if

no other flights with higher priority express the desire of using the

same slot (i.e., protect their flights in the same slot).

2https://en.wikipedia.org/wiki/Secure_multi-party_computation

3https://www.skybrary.aero/index.php/Network_Manager

4https://www.sesarju.eu/sites/default/files/documents/solution/Sol107%204%20Point%20Merge%20Complex%20TMA_OSED.pdf

https://en.wikipedia.org/wiki/Secure_multi-party_computation

D2.2 SYSTEM DESIGN DOCUMENT

SlotMachine!!

 121

