
Single-Use Delegatable Signatures Based on Smart Contracts
Stephan Krenn

stephan.krenn@ait.ac.at
AIT Austrian Institute of Technology

Vienna, Austria

Thomas Lorünser
thomas.loruenser@ait.ac.at

AIT Austrian Institute of Technology
Vienna, Austria

ABSTRACT
Delegation of cryptographic signing rights has found many appli-
cation in the literature and the real world. However, despite very
advanced functionalities and specific use cases, existing solutions
share the natural limitation that the number of usages of these
signing rights cannot be efficiently limited, but users can at most
be disincentivized to abuse their rights.

In this paper, we suggest a solution to this problem based on
blockchains.We let a user define a smart contract defining delegated
signing rights, which needs to be triggered to successfully sign a
message. By leveraging the immutability of the blockchain, our
construction can now guarantee that a user-defined threshold of
signature invocations cannot be exceeded, thereby circumventing
the need for dedicated hardware or similar assistance in existing
constructions for one-time programs.

We discuss different constructions supporting different features,
and provide concrete implementations in the Solidity language of
the Ethereum blockchain, proving the real-world efficiency and
feasibility of our construction.

KEYWORDS
Delegatable signatures, one-time programs, smart contracts

ACM Reference Format:
Stephan Krenn and Thomas Lorünser. 2021. Single-Use Delegatable Signa-
tures Based on Smart Contracts. In The 16th International Conference on
Availability, Reliability and Security (ARES 2021), August 17–20, 2021, Vienna,
Austria. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3465481.
3469192

1 INTRODUCTION
Digital signatures are the central cryptographic primitive to pro-
vide strong and provable authenticity and integrity guarantees.
Over the last decades, numerous advanced, so-called malleable,
signature schemes have been introduced, which allow the holder
of the secret key to delegate certain signature rights to a delegate.
Examples for such signature schemes include proxy signatures [8],
poly-based signatures [3], functional signatures [9], blank signa-
tures [31], redactable signatures [29], sanitizable signatures [11],
or protean signatures [24]; for a detailed overview, we refer to
Bilzhause et al. [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES 2021, August 17–20, 2021, Vienna, Austria
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/3465481.3469192

Despite significant differences in terms of functionality and ad-
dressed use cases, all these schemes share the natural limitation
that delegated rights are not limited in the number of usages of
these delegated rights. However, this might be a very desirable
property in many applications, e.g., for blank cheques.

Related work. In the following we give an overview of diverse
existing approaches that aim at enforcing a single usage of crypto-
graphic keys, which may also be adapted for the case of delegated
signature rights.

One-time programs (OTPs), introduced by Goldwasser et al. [20],
are computer programs that can only be executed a single time,
and self-destruct afterwards. However, it is easy to see that such
programs cannot be fully software-based, as it is always possible
to copy and re-execute a piece of software. Consequently, con-
structions for one-time programs found in the literature require
tamper-proof hardware, e.g., [17, 20, 23] or are based on trusted
execution environments [32].

While it is known that perfect, information theoretically se-
cure one-time programs are not even possible in the quantum set-
ting [10], Roehsner et al. [27] proposed a probabilistic quantum-
based solution for OTPs. In a nutshell, the idea is to encode the
program onto quantum states in a way that it needs to be measured
for evaluation, in which case the system changes its state and can
no longer be reused. Furthermore, by the no-cloning theorem, the
quantum program cannot be copied before execution. Specifically
for the case of delegated signing rights, Roehsner et al. [27] showed
how to make the failure probability arbitrarily small. However, even
though the resulting signature is classical, their construction is not
(yet) of practical interest as it requires to transfer quantum states
between the user and the delegate, and to maintain this quantum
state until measurement.

A complementary approach to prevent double-spending of cryp-
tographic tokens (e.g., signature keys, e-cash, etc.) is to guarantee
that some secret key is revealed if two linked activities are per-
formed, e.g., [1, 4, 7, 13, 25]. While this approach disincentivizes
users to use cryptographic tokens multiple times, its practical us-
ability is sometimes limited. Depending on the application scenario
it might be difficult to actually detect such a double usage. Further-
more, in this case, also potential physical consequences of issued
signatures need to be annulled, causing substantial overhead. Specif-
ically in the context of e-cash, online double-spending prevention
avoids this problem by constantly contacting the issuing bank to
detect whether a specific coin has already been spent [15]. This
approach is well suited for centralized systems, but does not scale
for scenarios where, e.g., single signature rights are to be delegated
without the existence of a central party.

Finally, recently, Goyal and Goyal [22] proposed a generic solu-
tion for OTPs leveraging proof-of-stake based blockchains, without
requiring trusted setup or random oracles.

https://doi.org/10.1145/3465481.3469192
https://doi.org/10.1145/3465481.3469192
https://doi.org/10.1145/3465481.3469192

ARES 2021, August 17–20, 2021, Vienna, Austria Stephan Krenn and Thomas Lorünser

Our contribution. In this paper, we propose a simple yet elegant
solution which allows one to enforce a single use of a cryptographic
token. Our solution is based on smart contracts, and intuitively
works as follows: when delegating signing rights, the owner of a
secret key publishes a smart contract, which may later be triggered
by the delegate holding a secret key. By executing the smart con-
tract, its state changes such that it cannot be invoked any more.
Furthermore, the state contains a blinded hash of the signed mes-
sage, such that the verifier can check that the received signature
was indeed the first signature issued by this delegate.

We propose multiple variants for our mechanism for different
scenarios, e.g., depending on whether a dedicated delegate is re-
quired or whether transparency is important.

Finally, we provide concrete implementations of our schemes
using Ethereum’s Solidity specificaton language for smart contracts,
and demonstrate the real-world efficiency and cheapness of our
solution.

2 PRELIMINARIES
We will next introduce the notation and required background that
will be used in the remainder of this document.

2.1 Notation
We denote the main security parameter by λ. For a finite set S, we
write s

s
← S to denote that s was sampled uniformly at random

in S. Similarly, we write a
s
← A(b) to denote that a is assigned

the outputs of a potentially randomized algorithm A on input b.
All algorithms discussed throughout this paper are probabilistic
polynomial time.

2.2 Cryptographic Background
We briefly recap the notation and security properties for digital
signatures and zero-knowledge proofs, as well as our modeling of
blockchains, but omit details due to space limitations and refer to
the original literature.

Digital signatures. A digital signature scheme consists of four
algorithms (SParGen, SKGen, SSign, SVerify):

ppΣ
s
← SParGen(1λ). On input the security parameter, this al-

gorithm outputs the public parameters ppΣ, which are as-
sumed to be implicit input to all further algorithms.

(sk, pk)
s
← SKGen(ppΣ). On input the public parameters, this

algorithm outputs a secret signing key sk and a correspond-
ing verification key pk.

σ
s
← SSign(sk,m). On input a secret signing key and amessage,
this algorithm outputs a signature σ .

b ← SVerify(pk,m,σ). On input a verification key, a message,
and a signature, this algorithm outputs a bit indicatingwhether
to accept or to reject the signature.

Informally, a signature scheme is correct if every honestly generated
signature also passes the verification algorithm. Furthermore, the
scheme is said to be existentially unforgeable under chosen-message
attacks (EUF-CMA), if no adversary can produce a valid on a new
signature, even after having seen arbitrarily many signatures on

messages of his choice. For a formal discussion we refer to the
literature [21].

Zero-knowledge proofs. Non-interactive zero-knowledge proof of
knowledge consists of three algorithms (ZKSetup,ZKProof,ZKVerify):

crsΠ
s
← ZKSetup(1λ). On input the security parameter, this

algorithm outputs the common reference string crsΠ for the
proof system, which is assumed to be implicit input to all
further algorithms.

π
s
← ZKProof(y,w). On input a statement y and a correspond-
ing w such that (y,w) ∈ R, this algorithm outptus a non-
interactive zero-knowledge proof of knowledge forw .

b ← ZKVerify(y,π). On input a statementy and a proof π , this
algorithm outputs a bit indicating whether to accept or to
reject the proof.

Intuitively, such a proof system needs to be correct, i.e., every hon-
estly generated proof should also pass the verification algorithm.
The zero-knowledge property requires that no adversary can in-
fer any information about w only knowing crsΠ , y and π ; this is
modeled through a simulator knowing a trapdoor to a (simulated)
crsΠ which, given as input a statement, generates simulated proofs
that are indistinguishable from honestly generated ones. Finally,
extractability requires that an adversary not knowing a valid wit-
ness is incapable of generated a valid proof for a given y; again, this
is modeled through the existence of an algorithm, which, know-
ing a trapdoor to a (simulated) crsΠ can efficiently extract a valid
w for every accepting proof π for a given statement. For formal
definitions and further discussion, we refer, e.g., to [14].

For readability, wewill use the notation introduced byCamenisch
and Stadler [12] to denote zero-knowledge proofs. That is, we will
write:

NIZK [(x1,x2) : Y1 = x1G ∧ Y2 = x2H] (m)

to denote a non-interactive zero-knowledge proof of knowledge
of x1,x2 such that the relation on the right hand side is satisfied.
All protocols used in this paper can efficiently be instantiated in
the random-oracle model using Σ-protocols [16, 28] and the Fiat-
Shamir heuristic [19], which will also be used to bind a proof to a
givenm.

Following the observations of Bernhard et al [5], we assume that
all relevant context–and in particular the statement to be proven–is
used when computing the challenge in the Fiat-Shamir transform,
even though we do not make this explicit to not disguise the nota-
tion.

Blockchains. In this paper, we consider a blockchain as a permis-
sionless, public bulletin board with two natural properties. Namely,
we require immutability, meaning that information written to the
blockchain can not be altered or deleted, and we assume that adver-
sarial forks can efficiently be distinguished from the actual block
chain state. For detailed discussions, we refer, e.g., to Goyal and
Goyal [22].

3 DEFINITIONS
The following sections first introduce the syntax and notation for
single-use delegatable signatures, and then summarize the security
requirements posed to such schemes.

Single-Use Delegatable Signatures Based on Smart Contracts ARES 2021, August 17–20, 2021, Vienna, Austria

3.1 Syntax
A single-use delegatable signature scheme consists of the following
set of algorithms:

pp
s
← ParGen(1λ). On input the security parameter, this algo-
rithm outputs public parameters pp.

(usk, upk)
s
←U.KGen(pp). On input the public parameters,

this algorithm outputs a secret key usk and a corresponding
public key upk for a user.

(dsk, dpk)
s
← D .KGen(pp). On input the public parameters,

this algorithm outputs a secret key dsk and a corresponding
public key dpk for a delegate.

(osk, sc)
s
← Delegate(usk, dpk,aux). On input a user’s secret

key, a delegate’s public key, and some auxiliary information
aux this algorithm outputs a delegated one-time signature
key osk, as well as a value sc (which in our case will be a
smart contract published in a blockchain).

(σ , tr)
s
← D .Sign(dsk, osk, upk,m). This algorithm allows a del-

egate holding a one-time key to compute a signature σ on
a messagem. Furthermore, the algorithm outputs an auxil-
iary value tr (which in our case will be trigger for the smart
contract).

(σ , tr)
s
←U.Sign(usk, osk, dpk,m). This algorithm allows the

user to compute a signature on a message as well as an
auxiliary value tr .

sc ′
s
← BCUpdate(sc, tr ,aux). Knowing tr , this algorithm up-
dates the state sc (which in our case will be a modification
of the state of smart contract).

b ← Verify(upk, dsk,m,σ , sc,aux). This message outputs a bit
indicating whether to accept or to reject a signature for a
given message depending also on sc and aux (which in our
case will be the state of the blockchain).

3.2 Security Requirements
In the following we informally discuss the security requirements
expected from a single-use delegatable signature scheme. A full
formalization of these requirements is left for future work.

Completeness. Completeness requires that, if all parties behave
honestly, signatures will always verify correctly.

Unforgeability. Strong unforgeability requires that an adversary
neither knowing the user’s nor the delegate’s secret key and the one-
time key can generate a valid signature on its own. In the case that
an adversary can generate new signatures on messages previously
signed by the user or the delegate, we say that the scheme satisfies
weak unforgeability.

Transparency. For malleable signatures, transparency typically
requires that an outsider not knowing any secret keys can decide
whether a valid signature has been generated by the user or by
the delegate. In the context of our work we additionally require
that also the originator of tr cannot be determined, in order to also
guarantee transparency during the BCUpdate process.

Onetimeness. Onetimeness requires that a delegated signature
key osk can only be used to sign a single message, either by the user

or by the delegate. Any further attempt to re-use osk, even by a legit-
imate user, will result in an invalid signature. As for unforgeability,
we distinguish between weak and strong onetimeness, depending
on whether multiple valid signatures for the same message can be
generated or not.

4 CONSTRUCTIONS
In the following we present constructions of single-use delegatable
signatures. We first present a very basic scheme where delegated
rights can be forwarded to third party (yet only consumed once). We
then present a scheme with a designated verifier, and subsequently
discuss possible extensions to achieve accountability, n-time signa-
tures, and more.

4.1 A Basic Scheme
The idea of our basic scheme is that the user puts a signed com-
mitment by means of a smart contract into a blockchain, and gives
the opening of the commitment to a delegate. To sign, the delegate
provides a zero-knowledge proof of knowledge of the opening to
the blockchain network, which verifies the proof and locks the
smart contract by storing the hash of the signed message.

Somewhat surprisingly, for the basic construction, the delegate
does not need to own any local secret key, i.e., dsk can be set to ⊥;
furthermore, when signing a message using the delegated signing
key, the delegate does not need to generate an actual signature (i.e.,
σ = ⊥): because of the soundness of the NIZK, already the fact
that h(m) is stored in the smart contract suffices to convince the
verifier that a legitimate entity (i.e., the signer or the delegate) have
triggered the signing process.

In the following presentation, let (SKGen, SSign, SVerify) be a
EUF-CMA secure signature scheme.
• ParGen(1λ) outputs pp = (1λ ,G,G,q), where G = ⟨G⟩ is a
cyclic group of prime orderq, such that the discrete logarithm
problem is hard in G.
• U .KGen(pp) outputs a key pair (usk, upk)

s
← SKGen(1λ).

• D .KGen(pp) outputs (dsk, dpk) = (⊥,⊥).
• Delegate(usk, dpk,aux) samples osk

s
← Zq . The algorithm

furthermore computesY = osk·G andτ = SSign(usk, (Y ,aux)),
where aux is a unique identifier of the block into which the
smart contract will be inserted in the blockchain. Finally,
the algorithm defines sc as a stateful smart contract for the
following functionality:
– The contract fixes pp, Y , τ , and upk, and initializes its
internal state as st = ε .

– Being called on input π and h, the contract first checks
whether st = ε and aborts if this is not the case.

– It then checks whether π is a valid NIZK of osk such that
Y = osk ·G. If this is the case, it sets st = h.

• D .Sign(dsk, osk, upk,m) computes h = h(m) and

π ← NIZK[(osk) : Y = osk ·G](h) .

It outputs σ = ⊥ and tr = (π , h).
• U .Sign(usk, osk, dpk,m) computes h = h(m) and

π ← NIZK[(osk) : Y = osk ·G](h) .

It outputs σ = ⊥ and tr = (π , h).

ARES 2021, August 17–20, 2021, Vienna, Austria Stephan Krenn and Thomas Lorünser

• BCUpdate(sc, tr) checks that tr = (π , h) is as defined in the
sc and ouputs sc with the potentially updated st .
• Verify(upk, dsk,m,σ , sc) outputs 1 if and only if sc contains
a valid signature for upk and if st = h(m).

4.1.1 Security Considerations. Correctness of the scheme follows
immediately by inspection.

Regarding unforgeability, one can see that the smart contract
is bound to the specific block on the blockchain by the inclusion
of the block identifier in the user’s signature τ . Therefore, any
attempt to forge a signature would need to either forge a signature
of the underlying EUF-CMA signature scheme, or leverage the
given instance of the smart contract sc . Now, by the soundness
properties of the deployed NIZK system, it follows that knowledge
of osk is required to generate a valid tr to activate the execution of
sc .

From the immutability properties and the usual soundness as-
sumptions of the block chain (honest majority, etc.), it furthermore
follows that the smart contract can only be executed once, and thus
strong onetimeness follows.

Finally, the distributions of signatures generated by the user and
the delegate are identical, and thus transparency follows immedi-
ately.

Formal proofs, together with formal security definitions, are
planned for future work.

4.1.2 Discussion. The above construction does not define a ded-
icated delegate. That is, the delegate could further delegate the
signing rights by simply forwarding osk to a third party, without
having to reveal any sensitive private key material. While this may
be desirable in certain situations, we will discuss in the following
constructions where the delegate is defined by the user and forward-
ing of signing rights is prohibited. However, it is worth noting that
this delegation does not contradict our unforgeability definition,
as the dsk = ⊥ would be known to a third party, and therefore the
requirement that dsk and osk need to be known to generate a signa-
ture would be satisfied. Furthermore, we note that also onetimeness
is not affected by forwarding osk, as the blockchain network would
still only accept the first invocation of sc .

We also note that somewhat surprisingly it is not necessary to
attach an actual signature to the signed message, as the pure fact
that a hash value is stored in the smart contract’s state is sufficient to
prove the authenticity of the message. However, certain situations
might require that for privacy reasons this hash value does not
enable an attacker to reconstruct the signed message. This can
be addressed by simply replacing h = h(m) by h = h(r ,m) for
r ← {0, 1}2λ , and defining σ = r as the actual signature. By doing
so, it is guaranteed that h statistically hides any information about
m.

Finally, the value of osk = x does not need to be kept secret
any longer once sc has been updated and the signing right has
been consumed. However, the NIZK cannot simply be replaced by
sending x in the plain, as malicious nodes could otherwise modify h
without being detected before the transaction has been sufficiently
distributed within the network. It is thus important to bind the
knowledge of x to the value of h.

4.2 Adding a Designated Delegate
We next present an extension of the basic scheme which allows
for a dedicated designate. To achieve this, it becomes necessary for
delegates to have sensitive private keys.

For a basic scheme, the user would now simply sign the dele-
gate’s public key dpk instead of Y in the Delegate algorithm. In
order to trigger the smart contract, the delegate would then no
longer compute a NIZK for the discrete logarithm of Y , but for dsk
corresponding to dpk. In order to also give the user the option to
trigger the smart contract herself, also a NIZK for usk correspond-
ing to upk would be accepted. It would now be guaranteed that
only the holder of dsk or of usk could sign the message, and thus
the delegate could no longer forward signing rights as this would
require to reveal dsk.

However, while this construction is complete, unforgeable, and
onetime, it does not achieve transparency, as the statement proven
by the NIZK would reveal whether it was generated by the user or
the delegate. In order to achieve symmetry, the NIZK thus shows
that one either knows the user’s or the delegate’s secret key.

More precisely, the full construction for a designated-delegate
signature scheme is given by the following algorithms:
• ParGen(1λ) outputs pp = (1λ ,G,G,q), where G = ⟨G⟩ is a
cyclic group of prime orderq, such that the discrete logarithm
problem is hard in G.
• U .KGen(pp) computes a key pair (usk′, upk′)

s
← SKGen(1λ).

Furthermore, it chooses usk′′
s
← Zq and sets upk′′ ←

usk′′ ·G. Finally, it outputs

(usk, upk) = ((usk′, usk′′), (upk′, upk′′)).

• D .KGen(pp) chooses dsk
s
← Zq and sets dpk← dskG.

• Delegate(usk, dpk,aux) sets osk = ⊥. It then parses usk =
(usk′, usk′′) and computesτ = SSign(usk′, (dpk,aux)). Here
aux is a unique identifier of the block into which the smart
contract will be inserted in the blockchain. Finally, the algo-
rithm defines sc as a stateful smart contract for the following
functionality:
– The contract fixes pp, dpk, τ , and upk = (upk′, upk′′), and
initializes its state st = ε .

– Being called on input π and h, the contract first checks
whether st = ε and aborts if this is not the case.

– It then checks whether π is a valid NIZK for usk′′ corre-
sponding to upk′′ or for dsk corresponding to dpk. If this
is the case, it sets st = h.

• D .Sign(dsk, osk, upk,m) computes h = h(m) and

π ← NIZK[(dsk, usk′′) : dpk = dsk ·G ∨

upk′′ = usk′′ ·G](h) ,

thereby using dsk as the witness and proving the first literal
of the clause. It outputs σ = ⊥ and tr = (π , h).
• U .Sign(usk, osk, dpk,m) computes h = h(m) and

π ← NIZK[(dsk, usk′′) : dpk = dsk ·G ∨

upk′′ = usk′′ ·G](h) ,

thereby using usk′′ as the witness and proving the second
literal of the clause. It outputs σ = ⊥ and tr = (π , h).

Single-Use Delegatable Signatures Based on Smart Contracts ARES 2021, August 17–20, 2021, Vienna, Austria

• BCUpdate(sc, tr) checks that tr = (π , h) is as defined in the
sc and ouputs sc with the potentially updated st .
• Verify(upk, dsk,m,σ , sc) outputs 1 if and only if sc contains
a valid signature for upk′ and if st = h(m).

Note that the NIZKs computed by the delegate and the user are
indistinguishable due to the zero-knowledge property.

4.3 Further Extensions
Our basic constructions can be extended in various directions, de-
pending on the specific needs and requirements of the use case.

Accountability. The constructions presented above do not offer
any possibility to identify the originator of a specific signature, as
both the user as well as the delegate could equally trigger the smart
contract. Accountability enables a predefined third party acting as
a judge to identify the signer, see, e.g., Beck et al [2]. One way to
achieve this in our protocols would be to let the signer encrypt
its public key, and later prove that the public key contained in the
ciphertext is the key for which the corresponding secret key is
known. That is, the NIZK would be changed to the following:

π ← NIZK[(dsk, usk′′, r) :
(dpk = dsk ·G ∧ c = Enc(dpk; r)) ∨(
upk′′ = usk′′ ·G ∧ c = Enc(upk′′; r)

)
](h) ,

where c is an encryption of the public key with randomness r . Here,
one can think of the encryption scheme as the ElGamal crypto
system [18].

For this proof, the delegate would use dsk and r in order to prove
the first statement, while the user could use usk′′ and r to prove
the latter statement. It is important to note that the NIZK implicitly
also proves that the same value for which the discrete logarithm
is known, is also encrypted within the ciphertext c , and by the
soundness property it is thus infeasible to encrypt a different value
in order to escape accountability.

Immutability. For instance in the scenario of sanitizable or blank
signatures, the user may wish to fix certain parts of the message
a delegate can sign. To achieve this, the user commits to the re-
strictions (e.g., in form of a message template, or as a circuit which
outputs 1 if and only if the signed message was valid) as part of the
smart contract, and hands over the opening of the commitment to
the delegate. Now, depending on the privacy requirements–whether
or not the restrictions may be known to the verifier–the delegate
either forwards the opening to the verifier as part of σ , or com-
putes a NIZK proving that the (known) signed message is indeed
valid with respect to the (secret) restrictions; note however that the
latter may be computationally expensive depending on the valid
modifications.

Multiple delegates and n-time signatures. Our constructions can
directly be extended to multiple delegates, by letting the user defin-
ing a list of public keys that are allowed to act on behalf of him.
Also, n-times signatures can be obtained by storing a list of up
to n hash values before denying further execution of the smart
contract. Here, though causing some computational overhead and
thus increasing the costs of the smart contract, the user could hide
the upper bound n from the public by only signing a commitment

1 pragma solidity ^0.4.14;
2 pragma experimental ABIEncoderV2;
3 import "./ altbn128.sol";
4
5 // One time delegatable signatures
6 contract Otds
7 {
8 // contract state
9 address public owner;
10 uint256 state;
11 Curve.G1Point comm;
12
13 // constructor initializing state and delegation
14 constructor(Curve.G1Point _comm) public {
15 owner = msg.sender;
16 state = 0;
17 comm = _comm;
18 }
19
20 // function called by delegatee to sign once
21 function OtdsSign(uint256 c, uint256 r, uint256

hmessage)
22 public
23 {
24 require(state == 0, "Already signed.");
25 Curve.G1Point memory tp = Curve.g1add(
26 Curve.g1mul(Curve.P1(), r % Curve.N()),
27 Curve.g1mul(comm , c % Curve.N()));
28 uint256 cp = uint256(
29 keccak256(abi.encodePacked(
30 comm.X, comm.Y, tp.X, tp.Y, hmessage)));
31 require(c == cp, "Invalid proof.");
32 state = hmessage;
33 }
34 }

Listing 1: Basic scheme as defined in Section 4.1

on it, and the delegate could prove that the number of preceding
invocations is smaller than the number hidden in the commitment.

5 EVALUATION
In the following we provide implementations of the schemes spec-
ified above in the Solidity language for smart contracts on the
Ethereum blockchain. Our implementation partially leverages ex-
isting elliptic curve implementations in Solidity [26, 30], and was
implemented using the Remix Suite for Solidity smart contracts,
which was also used to compute the cost estimates. The resulting
code is given in Listings 1 and 2.

In contrast to the abstract specification of our schemes it is not
necessary to let the user sign the smart contract in the concrete im-
plementation, as in Ethereum every transaction is anyways signed,
and the smart contract thus points back to its sender. If, however, a
binding to an existing public key outside of Ethereum is important,
including a signature as in the construction would be a straightfor-
ward modification.

Note that locally executed algorithms (i.e., for signing and verifi-
cation) are not depicted here due to space limitations, and as they
do not need to be included in the contract.

Ethereum distinguishes two types of costs related to smart con-
tracts. On the one hand, transaction costs are based on the costs for
sending a smart contract to the blockchain, and depends on fixed
costs for transactions and smart contracts, as well as the size of the
smart contract to be deployed. On the other hand, execution costs
are based on the actual computations which need to be performed

ARES 2021, August 17–20, 2021, Vienna, Austria Stephan Krenn and Thomas Lorünser

1 pragma solidity ^0.4.14;
2 pragma experimental ABIEncoderV2;
3 import "./ altbn128.sol";
4
5 // One time delegatable signatures
6 contract OtdsOR
7 {
8 // contract state and public parameters
9 address public owner;
10 uint256 public state;
11 Curve.G1Point g1;
12 Curve.G1Point g2;
13 Curve.G1Point y1;
14 Curve.G1Point y2;
15
16 constructor(Curve.G1Point _g1 , Curve.G1Point _g2 ,
17 Curve.G1Point _y1 , Curve.G1Point _y2)
18 public
19 {
20 // init state and public parameters
21 owner = msg.sender;
22 state = 0;
23 g1 = _g1;
24 g2 = _g2;
25 y1 = _y1;
26 y2 = _y2;
27 }
28
29 function OtdsSign(uint256 c1, uint256 c2,
30 uint256 r1, uint256 r2, uint256 hmessage)
31 public
32 {
33 require(state == 0, "Already signed.");
34 // proof is (c1, c2, r1, r2)
35 Curve.G1Point memory t1p = Curve.g1add(
36 Curve.g1mul(y1, c1 % Curve.N()),
37 Curve.g1mul(g1, r1 % Curve.N()));
38 Curve.G1Point memory t2p = Curve.g1add(
39 Curve.g1mul(y2, c2 % Curve.N()),
40 Curve.g1mul(g2, r2 % Curve.N()));
41 uint256 cp = uint256(keccak256(abi.encodePacked(
42 g1.X, g1.Y, y1.X, y1.Y,
43 g2.X, g2.Y, y2.X, y2.Y,
44 t1p.X, t1p.Y, t2p.X, t2p.Y, hmessage)
45)) % Curve.N();
46 require(addmod(c1, c2, Curve.N()) == cp,
47 "ERROR: Invalid proof.");
48 // accept signature
49 state = hmessage;
50 }
51 }

Listing 2: Advanced scheme as defined in Section 4.2

as the result of a transaction. This gas is caluclated in gwei, where
1ETH = 109gwei; simple transactions require 21k gas, whereas
complex transactions can easily exceed 1M gas. Therefore, for con-
tracts to be practical they have not only to be implementable, but
also with reasonable cost for the users.

Table 1 shows the transaction costs and execution costs for the
contracts presented above. For these contracts, the user needs to
pay the transaction costs, while the delegate would need to pay for
the execution costs.

At the time of writing this paper, 1ETH ≈ 2′500USD,1 resulting
in about 0.25c/kGas. Thus, for instance, the transaction costs for a
basic signature are about 16c, while the execution costs are about
10c, which can be considered practical for many sensitive applica-
tions compared to the costs caused by potential abuse of delegated

1https://coinmarketcap.com/currencies/ethereum/

Transaction Execution
costs in kGas costs in kGas

Plain EC multiplication 30 8
Basic scheme constructor 500 34
Basic scheme signature 67 41

Advanced scheme constructor 843 62
Advanced scheme signature 95 69
Table 1: Overview of costs measured (rounded to kGas).

rights. It can be seen that the main costs are due when initializing
the smart contract. These costs could easily be amortized by modi-
fying the contract in a way that it can be called by many users and
delegates, instead of using one contract per delegation.

6 CONCLUSION
In this paper we presented an alternative approach to enforcing the
limited use of delegated cryptographic rights. Instead of relying on
special-purpose hardware or aiming at disincentivizing delegates to
abuse their rights, our approach leverages smart contracts to upper
bound the number of invocations of delegated rights. We provided
concrete implementations of the corresponding smart contracts for
the Ethereum blockchain, proving the real-world applicabiltiy of
our schemes.

Future work will aim at extending the approach to additional
applications beyond basic signature schemes.

ACKNOWLEDGMENTS
The projects leading to this work have received funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme
under grant agreement No 830929 (“CyberSec4Europe”), from the
SESAR Joint Undertaking under grant agreement No 890456 (“Slot-
Machine”), and from the Austrian Research Promotion Agency
(“FlexProd”).

REFERENCES
[1] Foteini Baldimtsi, Melissa Chase, Georg Fuchsbauer, and Markulf Kohlweiss.

2015. Anonymous Transferable E-Cash. 101–124. https://doi.org/10.1007/978-3-
662-46447-2_5

[2] Michael Till Beck, Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls,
Kai Samelin, and Daniel Slamanig. 2017. Practical Strongly Invisible and Strongly
Accountable Sanitizable Signatures. 437–452.

[3] Mihir Bellare and Georg Fuchsbauer. 2014. Policy-Based Signatures. 520–537.
https://doi.org/10.1007/978-3-642-54631-0_30

[4] Mihir Bellare, Bertram Poettering, andDouglas Stebila. 2017. Deterring Certificate
Subversion: Efficient Double-Authentication-Preventing Signatures. 121–151.
https://doi.org/10.1007/978-3-662-54388-7_5

[5] David Bernhard, Olivier Pereira, and Bogdan Warinschi. 2012. How Not to Prove
Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. 626–643.
https://doi.org/10.1007/978-3-642-34961-4_38

[6] Arne Bilzhause, Henrich C. Pöhls, and Kai Samelin. 2017. Position Paper: The
Past, Present, and Future of Sanitizable and Redactable Signatures. In Proceedings
of the 12th International Conference on Availability, Reliability and Security, Reggio
Calabria, Italy, August 29 - September 01, 2017. ACM, 87:1–87:9. https://doi.org/
10.1145/3098954.3104058

[7] Jan Bobolz, Fabian Eidens, Stephan Krenn, Daniel Slamanig, and Christoph
Striecks. 2020. Privacy-Preserving Incentive Systems with Highly Efficient Point-
Collection. 319–333. https://doi.org/10.1145/3320269.3384769

[8] Alexandra Boldyreva, Adriana Palacio, and Bogdan Warinschi. 2012. Secure
Proxy Signature Schemes for Delegation of Signing Rights. 25, 1 (Jan. 2012),
57–115. https://doi.org/10.1007/s00145-010-9082-x

https://coinmarketcap.com/currencies/ethereum/
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-662-46447-2_5
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-662-54388-7_5
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1145/3098954.3104058
https://doi.org/10.1145/3098954.3104058
https://doi.org/10.1145/3320269.3384769
https://doi.org/10.1007/s00145-010-9082-x

Single-Use Delegatable Signatures Based on Smart Contracts ARES 2021, August 17–20, 2021, Vienna, Austria

[9] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. 2014. Functional Signatures and
Pseudorandom Functions. 501–519. https://doi.org/10.1007/978-3-642-54631-
0_29

[10] Anne Broadbent, Gus Gutoski, and Douglas Stebila. 2013. Quantum One-Time
Programs - (Extended Abstract). 344–360. https://doi.org/10.1007/978-3-642-
40084-1_20

[11] Jan Camenisch, David Derler, Stephan Krenn, Henrich C. Pöhls, Kai Samelin, and
Daniel Slamanig. 2017. Chameleon-Hashes with Ephemeral Trapdoors - And
Applications to Invisible Sanitizable Signatures. 152–182. https://doi.org/10.1007/
978-3-662-54388-7_6

[12] Jan Camenisch and Markus Stadler. 1997. Efficient Group Signature Schemes for
Large Groups (Extended Abstract). 410–424. https://doi.org/10.1007/BFb0052252

[13] Dario Catalano, Georg Fuchsbauer, and Azam Soleimanian. 2020. Double-
Authentication-Preventing Signatures in the Standard Model. 338–358. https:
//doi.org/10.1007/978-3-030-57990-6_17

[14] Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya, and Sarah Meiklejohn.
2014. Malleable Signatures: New Definitions and Delegatable Anonymous Cre-
dentials. 199–213. https://doi.org/10.1109/CSF.2014.22

[15] David Chaum. 1983. Blind Signature System. 153.
[16] Ronald Cramer. 1997. Modular Design of Secure yet Practical Cryptographic

Protocols. Ph.D. Dissertation. CWI Amsterdam, The Netherlands.
[17] Konrad Durnoga, Stefan Dziembowski, Tomasz Kazana, and Michal Zajac. 2013.

One-Time Programswith LimitedMemory. In Information Security and Cryptology
- 9th International Conference, Inscrypt 2013, Guangzhou, China, November 27-
30, 2013, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 8567),
Dongdai Lin, Shouhuai Xu, and Moti Yung (Eds.). Springer, 377–394.

[18] Taher ElGamal. 1985. A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms. 31 (1985), 469–472.

[19] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. 186–194. https://doi.org/10.1007/3-540-
47721-7_12

[20] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. 2008. One-Time
Programs. 39–56. https://doi.org/10.1007/978-3-540-85174-5_3

[21] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. 1988. A Digital Signature
Scheme Secure Against Adaptive Chosen-message Attacks. 17, 2 (April 1988),
281–308.

[22] Rishab Goyal and Vipul Goyal. 2017. Overcoming Cryptographic Impossibility
Results Using Blockchains. 529–561. https://doi.org/10.1007/978-3-319-70500-
2_18

[23] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay
Wadia. 2010. Founding Cryptography on Tamper-Proof Hardware Tokens. 308–
326. https://doi.org/10.1007/978-3-642-11799-2_19

[24] StephanKrenn, Henrich C. Pöhls, Kai Samelin, andDaniel Slamanig. 2018. Protean
Signature Schemes. 256–276. https://doi.org/10.1007/978-3-030-00434-7_13

[25] Bertram Poettering and Douglas Stebila. 2014. Double-Authentication-Preventing
Signatures. 436–453. https://doi.org/10.1007/978-3-319-11203-9_25

[26] Christian Reitwiessner. 2017. zkSNARKs test code.
https://gist.github.com/chriseth. last accessed on March 23, 2021.

[27] Marie-Christine Roehsner, Joshua A. Kettlewell, Tiago B. Batalhāo, Joseph F.
Fitzsimons, and Philip Walther. 2018. Quantum advantage for probabilistic one-
time programs. Nature Communications 9 (2018).

[28] Claus-Peter Schnorr. 1990. Efficient Identification and Signatures for Smart Cards.
239–252. https://doi.org/10.1007/0-387-34805-0_22

[29] Ron Steinfeld, Laurence Bull, and Yuliang Zheng. 2002. Content Extraction
Signatures. 285–304.

[30] Kendrick Tan. 2019. Heiswap Dapp. https://github.com/kendricktan/. last
accessed on March 23, 2021.

[31] Yujue Wang, HweeHwa Pang, and Robert H. Deng. 2018. Verifiably encrypted
cascade-instantiable blank signatures to secure progressive decision management.
Int. J. Inf. Sec. 17, 3 (2018), 347–363. https://doi.org/10.1007/s10207-017-0372-2

[32] Lianying Zhao, Joseph I. Choi, Didem Demirag, Kevin R. B. Butler, Mohammad
Mannan, Erman Ayday, and Jeremy Clark. 2019. One-Time Programs Made
Practical. 646–666. https://doi.org/10.1007/978-3-030-32101-7_37

https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1007/978-3-642-40084-1_20
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/978-3-030-57990-6_17
https://doi.org/10.1007/978-3-030-57990-6_17
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-85174-5_3
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-319-70500-2_18
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-030-00434-7_13
https://doi.org/10.1007/978-3-319-11203-9_25
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/s10207-017-0372-2
https://doi.org/10.1007/978-3-030-32101-7_37

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Background

	3 Definitions
	3.1 Syntax
	3.2 Security Requirements

	4 Constructions
	4.1 A Basic Scheme
	4.2 Adding a Designated Delegate
	4.3 Further Extensions

	5 Evaluation
	6 Conclusion
	Acknowledgments
	References

