

D3.1 Report on State-of-
the-Art of Relevant
Concepts

 Deliverable ID: D3.1

 Dissemination Level: PU

 Project Acronym: SlotMachine

 Grant: 890456
 Call: H2020-SESAR-2019-2
 Topic: SESAR-ER4-27-2019 Future ATM Architecture
 Consortium Coordinator: Frequentis
 Edition Date: 28 July 2021
 Edition: 01.01.01
 Template Edition: 02.00.02

EXPLORATORY RESEARCH

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 2

Authoring & Approval

Authors of the document

Name/Beneficiary Position/Title Date

Thomas Loruenser / AIT Senior Scientist 2021-07-01

Florian Wohner / AIT Research Engineer 2021-07-08

Roman Karl / AIT Scientist 2021-07-01

Reviewers internal to the project

Name/Beneficiary Position/Title Date

Christoph Fabianek / Frequentis Technical Manager 2021-07-12

Eduard Gringinger / Frequentis Project Manager 2021-07-19

Approved for submission to the SJU By - Representatives of beneficiaries involved in the project

Name/Beneficiary Position/Title Date

Christoph Fabianek / Frequentis Technical Manager 2021-07-20

Eduard Gringinger / Frequentis Project Manager 2021-07-20

Marie Carré / SWISS WP 5 Leader 2021-07-23 (silent approval)

Nadine Pilon / EUROCONTROL WP2 Co-Leader 2021-07-23 (silent approval)

Christoph Schuetz / JKU WP2, 3 Leader 2021-07-23

Rejected By - Representatives of beneficiaries involved in the project

Name/Beneficiary Position/Title Date

- - -

Document History

Edition Date Status Author Justification

01.00.00 2021-05-10 First draft T. Loruenser Initial structure

01.00.01 2021-07-01 Internal release T. Loruenser Review process

01.01.01 2021-07-28 Final release T. Loruenser Ready for delivery

Copyright Statement © – 2021 – SlotMachine Consortium. All rights reserved. Licensed to the SJU
under conditions.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 3

SlotMachine
A PRIVACY-PRESERVING MARKETPLACE FOR SLOT MANAGEMENT

This deliverable is part of a project that has received funding from the SESAR Joint Undertaking under
grant agreement No 890456 under European Union’s Horizon 2020 research and innovation
programme.

Abstract

This document describes the state-of-the-art in technical areas relevant for SlotMachine. In particular
it gives an overview on privacy enhancing technologies which are used to establish privacy preserving
marketplaces in a decentralised fashion. It further analyses the role of blockchain in this context and
how it could be leverages to further increase security and trust in the system. For all key technologies
used we did a literature review and analysed existing open source software frameworks for their
maturity and performance.

One of the core technologies analysed is multiparty computation (MPC) which enables the evaluation
of functions while keeping the inputs private. It will be used in SlotMachine to replace the trusted party
typically needed to evaluate the private bids and priorities of airspace users during the optimization
step. Secondly, we looked into methods for verifiable computing and how the overall process could be
made more transparent although the private inputs must be kept confidential. Efficient and practical
zero-knowledge proof systems have been studied and the most promising candidates to realize some
form of public verifiability and traceability are highlighted. Finally, blockchain solutions to realize a
dedicated permissioned ledger as a trust anchor in SlotMachine have been analysed. The scalability
and performance were measured in practical deployment scenarios.

Based on the results from our research and testing we finally conclude the results, give some
recommendations for further development and propose a first high-level architecture combining the
technologies.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 4

Table of Contents

1 Introduction ... 6

1.1 Purpose of the document ...6

1.2 Scope ..6

1.3 Intended readership ...6

1.4 Structure of the document and relation to other deliverables ...6

2 Privacy Preserving Market Places ... 8

2.1 Overview...8

2.2 Market Places and Privacy ..9

2.3 Secure Markets on Blockchains...11

2.4 MPC Supported Markets (on Blockchain) ...13

2.5 Privacy Aspects of Blockchain Tokens ...14

3 Multiparty Computation (MPC) .. 16

3.1 Overview...16

3.2 Relation to SlotMachine Requirements ..17

3.3 Overview of MPC Frameworks ..18
3.3.1 MP-SPDZ (forked from SCALE-MAMBA) .. 18
3.3.2 MPyC ... 19
3.3.3 FRESCO .. 19
3.3.4 ObliVM .. 20
3.3.5 Obliv-C ... 20
3.3.6 ABY .. 21
3.3.7 EMP-SH2PC.. 21

3.4 Evaluation Results...22
3.4.1 Systems based on Garbled Circuits ... 24

4 Verifiable Computing (VC) for Auditing ... 25

4.1 Introduction ..25

4.1 Relation to SlotMachine Requirements ..26

4.2 Overview of Protocol Families ..27
4.2.1 Systems based on linear PCPs ... 27
4.2.2 Discrete log-based systems ... 27
4.2.3 Short PCP ... 28
4.2.4 Other Solutions ... 29

4.3 Overview of Available Frameworks ..29
4.3.1 PySNARK .. 29
4.3.2 libsnark .. 30
4.3.3 libSTARK .. 31
4.3.4 Bulletproofs ... 31

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 5

4.4 Evaluation Results...32

5 Evaluation of Blockchains ... 33

5.1 Introduction ..33

5.2 Tendermint evaluation ...33

6 Conclusions and Recommendations .. 36

7 References ... 38

List of Tables

Table 1 MP-SPDZ speed of basic operations on vectors. ..22

Table 2 MPYC measurement results for basic functionality. ..23

Table 3: Peformance comparison of GC frameworks ...24

Table 4: Performance figures for proof systems. ...33

List of Figures

Figure 1: Comparison of variants based on garbled circuits (GC) ...25

Figure 2: The block interval time for the first experiment. ...34

Figure 3: The block interval time for the second experiment ...35

Figure 4: The block interval time for the third experiment ..35

Figure 5: Proposal for the cryptographic ...37

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 6

1 Introduction

1.1 Purpose of the document

This document summarizes the state-of-the-art for relevant concepts, methods, technologies and
frameworks which are used in SlotMachine to achieve security, privacy and transparency. In particular,
cryptographic techniques from the fields of multiparty computation (MPC), verifiable computation
(VC) and blockchain have been researched and evaluated. Besides the literature review, we also report
results from performance and scalability testing done with the most promising open-source
frameworks. The tests were done to learn more about practical aspects of available solutions and their
shortcoming when it comes to adoption for SlotMachine. The document basically reports results from
the work conducted in T3.1 (MPC), T3.2 (blockchain) and T3.3 (VC) and led to recommendations for
the system design and requirements as well as a R&D agenda for the subsequent tasks.

1.2 Scope

The document covers the state-of-the-art for security, privacy and transparency aspects in
SlotMachine. It is focused on technical means and cryptographic solutions which will be potentially
researched and used in the project. The scope is on the Privacy Engine component as defined in D2.2,
which comprises most of the cryptographic solutions. Additionally, blockchain is foreseen to be used
as a ledger by all participants and to also run the token system.

1.3 Intended readership

This document is intended for both internal and external audiences. Internally it is mainly aimed at the
technical team members in WP3 but also contributes important insights for work in WP2 and WP4.
Additionally, it serves as the basis for further selection of technologies and existing implementations
in subsequent WP3 developments. In particular, the insights are key for the design of the Privacy
Engine (PE) and the integration of blockchain in SlotMachine, especially with respect to security,
privacy and trustworthiness. However, it could be also a useful resource for other project participants
and the public because it provides a comprehensive overview of novel cryptographic methods not
widely known to non-cryptographers and security experts.

1.4 Structure of the document and relation to other deliverables

The remainder of the document is structured along the main technologies analysed and comprises the
following chapters.

Chapter 2 gives an overview on privacy preserving marketplaces and how they could be realized with
the technologies proposed for SlotMachine.

Chapter 3 presents relevant aspects of multiparty computation (MPC) which enables the evaluation of
functions while keeping the inputs private. Most important open source frameworks are compared
and benchmarking results presented to give a first indication for MPC usage in SlotMachine.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 7

Chapter 4 is focused on methods for verifiable computing (VC) and how the overall process could be
made more transparent although the private inputs must be kept confidential. Efficient and practical
zero-knowledge proof systems have been studied and the most promising candidates to realize some
form of public verifiability and traceability are highlighted.

Additionally, in chapter 5 blockchain solutions to realize a dedicated permissioned ledger as a trust
anchor in SlotMachine have been analysed. The scalability and performance were measured in
practical deployment scenarios.

Based on the results from our research and testing we finally conclude in chapter 6, give some
recommendations for further development and propose a first high-level architecture combining the
technologies.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 8

2 Privacy Preserving Market Places

2.1 Overview

SlotMachine is dedicated to the development of a platform to optimize management of airport
departure and landing slots. The platform shall enable a more flexible, fast and scalable semi-
automated flight prioritisation process for airlines in a fair and trustworthy way. Built with a privacy-
first approach it will protect sensitive airline data from competitors and airport operators but fully
unleash the potential of inter-airline flight swapping in real-time. The goal is to minimise the overall
costs caused by delays, which can be done by allowing airlines to almost dynamically rearrange and
prioritise certain flights. This is already possible within a fleet [1] but to minimise costs, airlines need
to be able to prioritise delayed flights across airline boundaries and would like to do so without
prolonged negotiations. This is inherently difficult because airlines as competitors are very careful not
to disclose any business secrets such as the flight-specific estimated costs associated with delays of
different severities.

SlotMachine tackles this challenge by combining tools for privacy-preserving computation on data
based on multiparty computation (MPC) with evolutionary algorithms and blockchain technology to
build a decentralised system that enables collaboration for optimal flight sequencing in challenging
conditions. It introduces a new approach to cooperative slot management and establishes a platform
for on-demand automated operation. The platform serves as a marketplace for airlines with the overall
aim of developing a novel flight prioritisation platform – the SlotMachine architecture – to improve
the use of available resources at airports and reduce costs for airlines.

The market mechanism as currently foreseen in the project resembles a mixture of optimization
problem and auctions system. It is at its core an optimization task closely related to queue/slot
reordering/scheduling but also takes into account preferences of airspace users (AUs) and enable them
to bid on certain flights in order to prioritize them. The bidding will be based on a dedicated token or
credit system which is used to establish fairness and equity in the long run, i.e., over multiple
reordering sessions. However, it should be stressed that the credits are not intended to be traded in a
classical fashion with fiat currencies on other markets, they should only help in supporting fairness and
equity between airlines.

In this report we review the state-of-the-art of relevant core technologies to support the increased
privacy and trustworthiness requirements envisioned by the project. From an architectural perspective
SlotMachine will be a decentralized platform where no single entity has full control over all information
and decisions. The basic architectural concept in SlotMachine from a technical point of view is
presented in D2.2 and the requirements are assessed in D2.1, including the security, privacy and
transparency requirements mainly supported by the technologies analysed here.

SlotMachine makes heavy use of modern cryptography and the main cryptographic components will
be combined into the Privacy Engine (PE) which encapsulates all complex cryptographic tasks in an
easy to use manner from the rest of the platform and represents the (distributed) place where
sensitive information is managed, i.e., specifically confidentiality is protected. In essence, the Privacy
Engine is a module enabling multiparty computation which processes sensitive information in
encrypted form only. If encrypted information is never restored for processing —as is typically the case
in conventional cloud computing— security and privacy gains can be realized. This is especially true in

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 9

outsourcing scenarios where multiple stakeholders share private information to collaborate on joint
data sets. However, because computation on encrypted data introduces significant computation and
communication overhead we had to carefully analyse and assess existing approaches to understand
their properties and limitations. We also report results of extensive performance testing and code
analysis of available open-source frameworks for MPC to compare their capabilities and maturity with
respect to our application.

Besides the protection of sensitive AU data, the system as a whole should also be trustworthy. It would
be especially interesting to add technical means for auditing and other assurance mechanisms in order
to convince users of correct consideration of their input data in individual optimization runs and fair
treatment over multiple runs. Blockchain is adequate for this task and will be used to maintain
metadata about optimization runs. The main property of blockchain relevant for our use case is
immutability, i.e., it serves as a public append-only log to store information about flight prioritization
in the past, and optionally to also run the credit system envisaged. The blockchain itself should be run
as distributed as possible but still in a closed user group, the AUs. In this report we will therefore look
particularly into permissioned blockchain/consensus protocols and their scalability.

Additionally, to combine both technologies — MPC and blockchain — in a fruitful way we had to
investigate possibilities to store data into blockchain in oblivious form while still making sense of the
data. In particular, we looked into possibilities to use zero-knowledge proof techniques to maintain
confidentiality of sensitive data but still enable public verifiability aspects, i.e. let AUs check the validity
of flight swaps but without leaking prioritization decisions. Therefore, we analysed existing methods
and open source frameworks, which also have been tested.

2.2 Market Places and Privacy

Although a heuristic optimization algorithm is used to compute swapping proposals, the idea of user-
driven prioritisation is also closely related to auction systems, especially with respect to prioritization
(bidding) of individual preferences. Therefore, we briefly mention most important auction mechanisms
and important privacy aspects regarding different phases. This is particularly interesting because
privacy aspects are key in auctions to work correctly and achieving fair market prices. If individual
bidders gain additional information they are not supposed to know, they have a clear advantage and
could significantly impact the markets. Especially, if trusted authorities are needed to run auctions,
they could become a single point of trust and failure. Therefore, in many situations —as for flight
swapping in SlotMachine— it is not feasible to find an entity which is fully trusted by all participants to
handle sensitive information and to correctly process them without bias. Imagine a basic sealed-bid
auction where the trusted authority colludes with a bidder which can then easily win any auction
without paying the true price, but just a bit more than the second highest bidder. Therefore, we are
interested in decentralized sealed-bid type of auctions/prioritization without any trusted auctioneer.
This is particularly interesting because the first practical applications for MPC were indeed auctions [2]
with exactly that goal.

As summarized in [3] there are four main types of auctions which are of practical interest in typical
real-live scenarios:

1. First-price sealed-bid auctions (FPSBA). Bidders submit their bids in sealed envelopes and hand

them to the auctioneer. Subsequently, the auctioneer opens the envelopes to determine the

bidder with the highest bid.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 10

2. Second-price sealed-bid auctions (Vickrey auctions). It is similar to FPSBA with the exception that

the winner pays the second highest bid instead.

3. Open ascending-bid auctions (English auctions). Bidders increasingly submit higher bids and stop

bidding when they are not willing to pay more than the current highest bid.

4. Open descending-bid auctions (Dutch auctions). Auctioneer initially sets a high price, which is

gradually decreased until a bidder decides to pay at the current price.

Additionally, besides the standard auctions there are many special kinds of auction. Interestingly the
first proposal for so called combinatorial auctions were based on slot-trading scenarios for airlines [4],
[5]. This kind of auctions is fundamentally different from the main four types and imposes completely
different challenges in the computation of winning bids. From a computational perspective they are
more like optimization problems than sorting tasks and can require a significant amount of
computational work. However, they are based on the idea of bidding on bundles of resources instead
of individual ones. In [4] they propose a market mechanism to trade starting and landing slots on
different airports as bundles and therefore optimize more globally. In SlotMachine the focus is on
already scheduled flight sequences for departures at a given airport, which is not directly related to
the problem of combinatorial auctions, but it somehow also resembles an optimization problem.

Regarding security and privacy of auctions, different goals could be desirable. Informally we can
distinguish the following properties from secure auctions, as have been defined in [5]:

1. Bid privacy. All bidders cannot know the bids submitted by the others before committing to their

own. This property is also guaranteed even in a collusion with a malicious auctioneer.

2. Posterior privacy. Given a semi-honest auctioneer, all committed bids are maintained private

from the bidders and public users.

3. Bid Binding. Once the bid interval is closed, bidders cannot change their commitments.

4. Public verifiable correctness. The auction contract verifies the correctness of the auctioneer’s

work to determine the auctioneer winner.

5. Financial fairness. Bidders or auctioneer may attempt to deviate from the protocol and

prematurely abort to affect the behaviour of the auction protocol. The aborting parties are

financially penalized while honest parties are refunded after a specific timeout.

6. Non-Interactivity. Bidders do not participate in complex interactions with the underlying

protocol of the auction contract. In fact, no extra communications between the bidders and the

auction contract are required aside from the submission of the bid commitments and the

associated opening values.

In SlotMachine we are clearly focusing on bid privacy (1.) in the sense that information to prioritize

certain flight by airlines must be kept private. At the time of writing, in SlotMachine flight prioritization

is intended by means of a weight map and additional credits which can be used to further prioritize

certain flights. This means that exactly this weight map as well as the additional credits spent by AUs

on their flights have to stay encrypted and are only allowed to stay within the privacy engine.

Furthermore, we also do not want to reveal the private information provided by airlines after the

optimization run, thus, we are also aiming for posterior privacy (2.). Bids in the sense of SlotMachine

contain many business secrets about internal cost structures of airlines and contain a lot of information

also about related flights and recurrent situations. Keeping AUs preferences secret over the full life

cycle in the system is essential to keep the airlines participating. Also bid binding (3.) is very important

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 11

in SlotMachine and will be supported, also by the help of blockchain. Finally, also public verifiability

(4.) is aspired in SlotMachine, because this is seen as an important property to increase the trust in the

platform. This goal is especially challenging when it has to be combined with posterior privacy. If all

bids are revealed after the new swapping proposal was accepted, things would be easier, because the

original bids could just be opened and verified. However, to do it in encrypted form modern

cryptographic techniques are needed in form of “Zero-Knowledge Succinct Non-Interactive Argument

of Knowledge” (zk-SNARKS), especially ones which can be combined with MPC. Finally, financial

fairness (5.) and non-interactivity (6.) are not in the focus of SlotMachine, although we have planned

to look into misuse cases regarding AU and also foresee some public verifiable means to check the

correctness of AU input data. Nevertheless, because all parties are known to each other and because

we expect the AUs to participate on a continuous basis, it would be rational for them to play with the

rules to be not expunged from the system.

2.3 Secure Markets on Blockchains

Since the emergence of Bitcoin and Ethereum, there has been a huge hype around blockchains.
Although the hype may be not completely justified from a technical perspective, these novel
systems still have some potential in several application areas. A system that is built around a
blockchain as main data structure mainly consists of three parts:

1. a mechanism for processing transactions
2. a consensus mechanism
3. a network protocol

The network protocol is an important aspect, but it is the least novel of these three parts and does not
differ much from other distributed systems. The main innovative feature of blockchain-based systems
is often considered to be the consensus algorithm. Indeed, Bitcoin’s proof-of-work drew a lot of
attention from the scientific community. On the other hands, it cannot be denied that this kind of
consensus mechanism suffers from huge problems when applied in practice, the main problem being
the vast energy consumption. There exist several concepts to alleviate this point, for example proof-
of-stake, but also mechanisms that deviate from the Nakamoto consensus. But the part that offers the
most interesting possibilities for future systems in a wide range of different application areas is the
way how transactions are encoded, interpreted and processed. The transactions that are stored in the
blockchain are connected by a logic that is formulated in some less or more expressive programming
language. Furthermore, several cryptographic components are included to reduce the minimal level of
trust that is expected of a single user in these multi-user environments. The next two subsections
explain the components that can be employed when building markets by utilising blockchain-based
systems.

Specific markets often follow their own set of rules, protocols and processes, which can be supported
by code that allows a level of automation. Because markets are distributed by nature and feature
different sets of actors, this could be a field of research with a lot of potential in the context of
blockchain-based systems. Patterns that occur often in various markets are schemes that resemble
auctions or have similar properties than auctions. Indeed, auctions on smart contracts have drawn a
lot of attention in research and are also one of the basic examples that are brought up often to show
the potential of programmable blockchain environments.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 12

One type of markets that is especially relevant when examining the question how and if the application
of blockchains can be beneficial in future are markets for electrical energy. One reason for this are the
necessary changes due to the need of including more renewable energy sources into the grids and
thereby changing a lot of requirements for them. Energy grids are expected to get a lot more
distributed in comparison to the relatively centralised approach of current grids. Also in this context,
prices can be regulated by auctions. Ul Hassan et al. [6] presented an approach for auctions on
microgrids that also takes several privacy considerations into account.

Another relevant area is the allocation of resources of some kind of infrastructure. Jiao et al. [7]
investigated the topic of auctions for computing resource allocation for cloud computing. They used a
blockchain-based system with proof-of-work as consensus mechanism. A different approach that
focusses on efficiency to be suitable for mobile environments is presented in [8].

Similar to the classic (forward) auctions are reverse auctions where the roles of buyer and seller are
swapped. This setting is relevant for construction or infrastructure orders with a trusted actor, possibly
represented by a state, with the central role of a buyer. Franco et al. [9] described a reverse auction
for infrastructure supply, including network function virtualization in their design.

Throughout the several application areas of auctions some requirements and properties pop up
regularly and can be viewed upon with a more general perspective independently of the specific area.
Many auctions do not rely solely on public information but require some level of privacy. It is not
obvious how to get a good level of privacy on an inherently distributed environment with a blockchain
that should be readable by all the participants of an auction to establish a layer of trust. Galal et al.
[10] presented a protocol for auctions in an Ethereum network. It included sealed bids with a public
key encryption and the usage of zero-knowledge proofs. Although strong privacy properties for an
auction protocol are in general achievable, they are often not desirable in practice due to their strong
impact on the performance. An auction scheme with a good trade-off between privacy properties and
performance was given in [11]. They focussed on reducing the number of blocks necessary to complete
the auction. This is an important performance aspect on a blockchain-based system because the
transaction throughput is often limited as is the rate at which new blocks are generated.

As with the general spending of tokens, there can be a connection to not only virtual, but physical
objects in auctions. Indeed, most of the more interesting application areas deal with some kind of
physical objects. With smart contracts, this is often done by introducing oracles. In this context, an
oracle is a trusted entity that reports the relevant part of the state outside of the blockchain system
on the blockchain. Special measures have to be taken to ensure the trustworthiness of this approach
as the oracle has such a critical role. Omar et al. [12] presented a concept for auctions with trusted
timer oracles on Ethereum.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 13

2.4 MPC Supported Markets (on Blockchain)

MPC can be considered the most practical approach for generic computation on encrypted data. This
means, that virtually any function can be computed in an MPC system in principle, however, due to
the overhead introduced by MPC protocols they are by orders of magnitudes slower than a classical
computer.

Nevertheless, the first realization of a real application was demonstrated in an auction held for the
Danish sugar beets market in 2009 [2]. This was the first large-scale and practical application of
multiparty computation and enabled farmers to get a fair market clearing price. They used a local setup
with three computers in the same room and ran a semi-honest MPC protocol to calculate the clearing
price. About 4000 values for prices were supported at most and 1229 bidders participated in the
auction. The inputs from the individual bidders were encoded by verifiable secret sharing and the

computation lasted for half an hour.

The basic problem of this setting is the lack of scalability of the MPC protocols itself. This resulted in a
setup with 3 nodes which prevents from the clients to directly participate in the computation but
encode the inputs, which still leads to a form of outsourced computation, although a distributed one.
The improved security in this setting is evident, but to further increase the trustworthiness of the
system some form of public verifiability would be desirable.

To cope with this issue new research combined the mechanisms with blockchain and zero-knowledge
proof techniques. The blockchain is the ideal candidate to be used for storage of relevant audit data in
an accessible manner, however, because all data written to the blockchain is visible to every party
additional machinery is required. ZKP protocols enable parties to publish proofs about statements
without revealing secrets per se (witnesses) and are therefore an ideal tool to integrate blockchain
with the confidentiality preserving MPC functionality.

Sánchez [13] proposed Raziel, a system that combines MPC and ZKP to guarantee the privacy,
correctness and verifiability of smart contracts. The idea underlying Raziel is a smart contract which
also guarantees correctness of auctions besides the standard properties by leveraging the ZKP
mechanism. The validity proofs can also be shown to third parties and are therefore publicly verifiable.
Another approach to verifiable auctions has been presented in [3] and a software prototype can be
found on GitHub1. The solution combined homomorphic commitments and ZKP together with a
verifiable comparison protocol to achieve a secure FPSBA. The system is verifiable and privacy
preserving against outsiders, however, a trusted auctioneer is still required because he learns all bids.

Furthermore, Blass and Kerschbaum [11] presented Strain, a protocol to implement sealed-bid
auctions on top of blockchains that protects the bid privacy against fully malicious parties. The protocol
basically stores encrypted bids in the blockchain. By using a specific encryption scheme with
homomorphic properties in combination with bitwise encryption, they enable bidders to run
interactive protocols in zero knowledge generating relations proofs and therefore, support auctions in
a peer to peer fashion. Albeit being scalable by the peer-to-peer nature, the protocol still needs a semi-

1 https://github.com/HSG88/AuctionContract

https://github.com/HSG88/AuctionContract

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 14

trusted auctioneer as arbiter and requires all parties to be online during all auction phases. It also leaks
the full order of all bids compared to the winning bid as required by auctions.

Kosba et al. [14] presented Hawk, a framework to establish privacy preserving smart contracts on the
Ethereum blockchain. Hawk is intended to protect transaction data on chain by leveraging zero-
knowledge proof techniques. The goal was towards easy to use framework providing a compiler
managing the cryptographic tasks. This work could be relevant for the specific credit system embedded
in SlotMachine which also has some privacy requirements. Up to our knowledge, the Hawk framework
has still not been released yet on the project homepage2.

In another work, Galal and Youssef [15] utilized Zero-Knowledge Succinct Noninteractive Argument of
Knowledge (zk-SNARK) [16] to realize privacy friendly auctions on a blockchain. The solution is not well
suited because it makes use of a trusted auctioneer who learns the bids. This is contrary to our goals;
however, the approach contains interesting aspects and by realizing the auctioneer in a distributed
fashion by MPC, the system closely resembles the data flow in SlotMachine.

Additionally, cryptocurrencies have been used to incentivize fairness and correctness, and avoid
deviations from the MPC or ZKP protocol. In this systems money has to be escrowed in deposits which
are only returned if the behave honestly. This in effect encourages parties to strictly follow the
protocols to avoid the financial penalty. Protocols in this direction have been proposed in [17]–[20].

2.5 Privacy Aspects of Blockchain Tokens

The usage of tokens is still the only widely applied use case for blockchain-based systems. Tokens can
be used as a kind of money or currency, either with a concrete value in relation to legal currencies or
with a more abstract value. Such tokens are called fungible or interchangeable tokens. There are also
non-fungible tokens, which represent some kind of collectible and have some properties that render
each token potentially individual. A currency, thus a fungible token, is often build-in in a blockchain-
based system, like the currency Bitcoin in the Bitcoin system and Ether in Ethereum. The programming
capabilities allow to build further tokens on top of those systems. To that regard, Bitcoin‘s flexibility is
more limited due to its programming language, which is not Turing-complete. Ethereum allows the
creation of more complex programs, which are called smart contracts. Ethereum is also the platform
with the broadest application of various tokens. In order to have some compatibility between the
tokens and to allow the reuse of reviewed interfaces and code, there exist several token standards,
which are described with Ethereum Improvement Proposals. The main standard for fungible tokens is
ERC-20 [21]. For non-fungible tokens, Ethereum’s most widely used standard is ERC-721. There are a
lot more properties which have to be taken into account when choosing or designing a suitable token
for specific use cases. One extensive classification is presented by Oliveira et al. [22]. There are tokens
with a connection to physical objects and purely virtual tokens. Furthermore, there are various more
technical aspect like the use of layers beside the blockchain.

Bitcoin was designed with features which allow a level of privacy. Bitcoin addresses are not directly
linked to an identity, which means that the identity of an account can be kept secret. This kind of
anonymity is not very strong, because it is possible to extract information from transactions and their
senders and receivers, and sometimes referred to as pseudo-anonymity [23]. Only if the behaviour of

2 http://oblivm.com/hawk/download.html

http://oblivm.com/hawk/download.html

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 15

a user is accordant with certain privacy guidelines, its anonymity can be kept. There exist also a range
of services, like CoinJoin [24] and CryptoNote that assist in obfuscating coin flows and protecting
identities. There are also some crypto currencies with stronger privacy features build-in, like Monero
[25], Zcash and Dash. Monero uses ring signatures to obscure the sender, ring confidential transactions
to hide the amount and stealth addresses to hide the receiver. Zcash supports transactions with zk-
SNARKs out of the box, in contrast to other crypto currencies, where they have to build laboriously on
top.

For several reasons, the frame conditions of token usage on smaller permissioned networks differ from
a token usage on large public networks. The typical consensus mechanism for large public networks is
still a Nakamoto consensus based on proof-of-work. It only makes limited sense to apply this consensus
mechanism to systems with low computational power. Frameworks like Hyperledger Fabric and
Tendermint [26] deviate from the Nakamoto consensus and use stricter types of consensus instead,
because they were designed with a focus on potentially small permissioned networks. Both of those
frameworks also have capabilities for writing Turing-complete smart contracts and thus for creating
tokens similar as with Ethereum. But also on permissioned networks privacy can be an issue.
Androulaki et al. [27] presented one approach of a privacy-preserving token mechanism on top of
Hyperledger Fabric where the permissioned setting is leveraged to fabricate NIZK proofs.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 16

3 Multiparty Computation (MPC)

3.1 Overview

Multiparty computation is a protocol between a number of players P1,...,Pn who each initially hold
inputs and we can then securely compute some function f on these inputs. This should hold, even if
players exhibit some amount of adversarial behaviour. The goal can be accomplished by an interactive
protocol π that the players execute. Intuitively, we want that executing π is equivalent to having a
trusted party T that receives privately xi from Pi, computes the function, and returns yi to each Pi. With
such a protocol we can — in principle — solve virtually any cryptographic protocol problem. The
general theory of MPC was developed in the late 80s and overviews of the theoretical results known
can be found in [28], [29].

Many different MPC protocols have been proposed in the past and they achieve very different
properties and security guarantees. The minimal cryptographic properties of any MPC protocol are

• Correctness

• Input Privacy

Additional properties are often desired, such as

• Fairness

• Guaranteed output delivery

Besides the security properties, another way to categorize and assess MPC protocols by their adversary
models. The most important considerations when it comes to adversaries are:

• Threshold security versus security against dishonest majority

• Unconditional versus computational security

• Active versus passive security

• Adaptive versus static security

• Synchronous versus asynchronous communication

• Broadcast channel versus point-to-point communication

From the very basic performance figures given by the nature of different solutions in SlotMachine we
opted to start with the most efficient protocols for active security in the honest majority model. First
tests already showed that dishonest majority protocols are performance wise out of any feasible range
for the given requirements and do not fit to our needs. Therefore, in the following we will shortly
mention the most efficient solutions published for this type of protocols which seem to integrable with
existing open-source solutions and have optimization potential for batch processing.

Until recently protocols for active security have been considered rather inefficient. However, Lindell
and Nof [30] showed more efficient protocols with great practical impact. They identified that privacy
of active protocols is already preserved by existing passive protocols, and the protocols are susceptible
to additive attacks. In [31] the protocols have been further improved and are the best known solution
in the honest majority setting introduce only minimal overhead if processing can be batched.
Furthermore, both protocols [30], [31] provide the highest level of security, i.e., information theoretic

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 17

security, and are therefore also quantum-safe. Additionally, [32] showed how to achieve fairness for
the proposed protocols for active security with batch wise multiplication verification. Finally, [33]
introduced a very efficient protocol to convert passive secure protocols into active secure ones with
very little overhead. They basically apply a type of batch verification for multiplication operations,
which can be done in bulk before the final result is revealed. Overall, the achievements in the last 3
years tremendously improved the state-of-the-art for active secure protocols in the honest majority

setting and will be the starting point for further developments in SlotMachine.

3.2 Relation to SlotMachine Requirements

MPC has been selected as a core technology in PE for privacy protection of sensitive data and to enable
collaboration on them in a secure way. On the system level the technology will be used to address the
following non-functional requirements defined in D2.1:

priv_1, priv_2, priv_3, priv_4, priv_8, priv_9,
priv_10

MPC will be used to fulfil the core confidentiality
(privacy) requirements by computing on
encrypted data

priv_6 MPC should assist in the detection of malicious
clients although the input is encrypted

Additionally, in the selection process of MPC solutions and protocols following requirements are
considered important when reviewing the state of the art:

perf_1, perf_2, perf_4 Main systems parameters to be supported by
the PE for practical application of the technology

perf_9 The system should enable optimizations and
interleaved/parallel execution

port_1 The system shall be based on open source
solutions

Finally, because the PE is intended as an easy deployable and usable MPC system which is flexible but
tailored to the specific tasks in SlotMachine, MPC will contribute to the following functional
requirements. However, the protocols and frameworks analysed in this report are only matched
against the basic functionalities of an MPC protocol and not application specific requirements which
will be later integrated during the SlotMachine implementation phase.

Pe_2, Pe_7, Pe_8, Pe_9, Pe_13 Confidentiality requirements directly provided
by the MPC protocol

Mpc_1, Mpc_9, Mpc_11, Mpc_15, Mpc_16,
Mpc_17

Capabilities which have to be supported by the
raw protocols (gates, circuits, data types, ….)

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 18

3.3 Overview of MPC Frameworks

For the analysis of existing open source software implementations of MPC protocols we started from
the frameworks listed in AwesomeMPC-Frameworks3 and selected the most promising candidates.

To evaluate the maturity and adequacy in SlotMachine different criteria were important for us:

1. Installation

2. Tests / Demos / Examples

3. Documentation

4. Programming Language

The amount of information and software prototypes seem overwhelming, especially if also the number
of frameworks listed as retired4 are considered. Out of the many available frameworks we identified
MP-SPDZ and MPyC as the most relevant for SlotMachine and analysed them in detail. Additionally,
we also investigated solutions with fixed numbers of parties (2 and 3). After initial review we focused
on ObliVM, Obliv-C, ABY and EMP-SH2PC as most promising candidates.

3.3.1 MP-SPDZ (forked from SCALE-MAMBA)

Summary: Provides a wide variety of protocols for both arithmetic and boolean circuits;
Supports many protocols, active and passive; implements a virtual machine that executes byte
code compiled from a Python-like language; fork of SCALE-MAMBA
(https://github.com/bristolcrypto/SPDZ-2); more flexible and extendible as SCALE-MAMBA;
more protocols are supported and better for benchmarking than SCALE-MAMBA

Location: https://github.com/data61/MP-SPDZ

Authors / Maintainer: Marcel Keller

Dependencies / Required Software:

• Make, GCC or Clang, Python, Libsodium, Boost, OpenSSL
• MPIR with C++ support
• NTL (optional)

Advantages:

• Efficient and fast

Disadvantages:

• No obvious way to directly use from
other software

Development Status: Very active, but only one developer (last commit July 2021)

3 https://github.com/rdragos/awesome-mpc#frameworks
4 https://github.com/rdragos/awesome-mpc#retired-software

https://github.com/bristolcrypto/SPDZ-2
https://github.com/bristolcrypto/SPDZ-2
https://github.com/data61/MP-SPDZ
https://github.com/rdragos/awesome-mpc#frameworks
https://github.com/rdragos/awesome-mpc#frameworks
https://github.com/rdragos/awesome-mpc#retired-software
https://github.com/rdragos/awesome-mpc#retired-software

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 19

3.3.2 MPyC

Summary: A generic framework that allows to write MPC-code directly in Python (forked from
http://viff.dk/); based on secret sharing with support for honest majority multi-party protocol;
secure against semi-honest adversaries

Location: https://github.com/lschoe/mpyc

Authors / Maintainer: Berry Schoenmakers

Dependencies / Required Software:

• Python 3.6 or higher

• gmpy2 (optional)

Advantages:

• Easy to set up (there is a
https://pypi.org/project/mpyc/
package)

• Easy to integrate into existing
software

• Efficient and fast

Disadvantages:

• Slow on purely local computations

Development Status: Very active, but only one developer (last commit July 2021)

3.3.3 FRESCO

Summary: A Java framework implementing the SPDZ/SPDZ2k and TinyTables protocols

Location: https://github.com/aicis/fresco

Authors / Maintainer: The Alexandra Institute https://alexandra.dk

Dependencies / Required Software

• Java [C/C++ (using JNI)]

Advantages:

• Good documentation

• Reasonably easy to use

Disadvantages:

• Limited protocols

• SPDZ2k implementation is incomplete

• Poor performance

Development Status: Somewhat active (last commit July 2021)

http://viff.dk/
http://viff.dk/
https://github.com/lschoe/mpyc
https://pypi.org/project/mpyc/
https://github.com/aicis/fresco
https://alexandra.dk/

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 20

3.3.4 ObliVM

Summary: A Programming Framework for Secure Computation Compiler
(written in Java) for a C-like language

Location: https://github.com/oblivm/ObliVMLang

Authors / Maintainer: Chang Liu, University of Maryland

Dependencies / Required Software

• Java 8

Advantages:

• None

Disadvantages:

• Could not be benchmarked properly

because of non-deterministic program

termination

• Very inefficient (high number of gates,

scaling badly)

• Anecdotally, performance is bad and

highly variable

• Project has been abandoned

Development Status: Inactive (last commit November 2015)

3.3.5 Obliv-C

Summary: Compiler (written in OCaml) for the C-like Obliv-C language

Location: https://github.com/samee/obliv-c https://oblivc.org

Authors/Maintainer: Samee Zahur & David Evans, Security Research Group, University of Virginia

Dependencies / Required Software

• libgcrypt
• OCaml
• OCaml libraries: batteries

Advantages:

• Reasonably easy to install

• Interfaces with C code

• Best performance

Disadvantages:

• No active development in recent years

• Sparse, incomplete documentation

Development Status: Somewhat active (last commit June 2021)

https://github.com/oblivm/ObliVMLang
https://github.com/samee/obliv-c
https://oblivc.org/

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 21

3.3.6 ABY

Summary: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation C++
framework to programmatically build circuits from gates (supports AND, XOR, OR, ADD, MUL,
SUB, GT, MUX, INV)

Location: https://github.com/encryptogroup/ABY

Authors / Maintainer: Daniel Demmler, Thomas Schneider and Michael Zohner, Cryptography
and Privacy Engineering Group (ENCRYPTO), TU Darmstadt

Dependencies / Required Software

• Boost
• libgmp

Advantages:

• Very efficient (low number of gates)

• Good performance

Disadvantages:

• Could not be benchmarked properly
because of non-deterministic program
termination when run via script

Development Status: Somewhat active (last commit July 2021)

3.3.7 EMP-SH2PC

Summary: Semi-honest Two Party Computation Based on Garbled Circuits Part of the EMP
(Efficient MultiParty computation) toolkit, a C++ framework to programmatically build circuits
from functions

Location: https://github.com/emp-toolkit/emp-sh2pc

Authors / Maintainer: Xiao Wang, Alex J. Malozemoff and Jonathan Katz, University of Maryland

Dependencies / Required Software

• other parts of EMP toolkit

Advantages:

• ?

Disadvantages:

• Little to no documentation

Development Status: Active (last commit July 2021)

https://github.com/encryptogroup/ABY
https://github.com/emp-toolkit/emp-sh2pc

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 22

3.4 Evaluation Results

Because the field of MPC implementations as a whole is still immature, it is difficult to judge the
maturity of individual projects. This is reflected in the wide variety of approaches to interoperability.
While some frameworks (like MP-SPDZ) provide only self-contained environments that exclusively
read and write specially prepared files, others are almost regular libraries that integrate into their
respective language environments – Python in the case of MPyC, Java in the case of FRESCO, and C in
the case of Obliv-C.

Out of the above-listed frameworks, only MPyC and MP-SPDZ (both almost exclusively developed by

one person) have seen sustained development over the respective project’s lifetime. The others seem

to be in maintenance mode. We therefore decided to investigate these two frameworks more

thoroughly.

Table 1 MP-SPDZ speed of basic operations on vectors.

Delay [ms] Max(5/100) [s] Mul(100) [s] Mul(1000) [s]

0 1,25967 0,97966 0,676558

10 21,3671 1,13602 10,6649

20 41,5928 2,21266 20,8486

30 61,6835 3,28712 31,0178

40 81,8286 4,36458 41,1688

50 101,969 5,43567 51,3525

60 122,148 6,51935 61,6066

70 142,311 7,59087 71,7877

80 162,559 8,66017 91,9108

90 182,768 9,73845 92,102

100 202,967 10,8134 102,274

We quickly found that it is important to compare computations under (somewhat) realistic conditions.

A good example is given in Table 1 below, which compares the runtime of a simple multiplication of

two vectors of 100 32bit integers each, and a slightly more complicated function that computes the

maximum 5 elements out of a vector of 100 32bit integers, running on MP-SPDZ. Considered purely as

a local computation, both functions are close to each other in their runtime, but as soon as any kind of

network delay is added to the simulated runs (by way of the command tc qdisc add dev lo

root netem delay <N>ms; the numbers given in the table refer to the two-way delay, so N is

set to half the listed value), their runtimes differ from each other by about a factor 20. Notice this also

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 23

means that local performance (as measured for example on a single computer without any induced

delay) does in no way indicate the performance to be expected under network conditions — in the

one case, the runtime goes from one and a quarter second to more than twenty seconds, while in the

other case, it goes from just under one second to slightly more than one second.

The picture is further complicated when comparing the results of MP-SPDZ with those of MPyC. While

on a purely local level finding the maximum five elements out of a vector of 100 elements is more than

ten times slower with MPyC, under any kind of realistic delay, MPyC is faster than MP-SPDZ. This is

even more pronounced for the multiplication tests, which demonstrates another important factor in

analyzing MPC frameworks: the necessity of domain-specific optimizations. MP-SPDZ uses an

optimizing compiler, but of course this cannot guarantee that the resulting code is actually optimal.

The multiplication tests for MP-SPDZ are written as one would write them for ordinary computations

— first the two input vectors are multiplied element by element, then each element is revealed (to

prevent the computation from being “optimized away” by the compiler). This means that for every

vector element, two rounds of communication are necessary. Optimally, the multiplications would be

batched such that the whole operation would take only one round of communication, but this would

necessitate either a “sufficiently smart” compiler or the use of specialized vectorized operations by the

programmer.

The MPyC version of the multiplication tests is written in the same style, but this framework does not

use a compiler for a-priori optimization of computations, and instead relies on asynchronous

computation and Python’s highly optimized network stack, even though use of specialized vector

primitives is also possible. See Table 2 for results.

Table 2 MPYC measurement results for basic functionality.

Delay [ms] Max(5/100) [s] Mul(100) [s] Mul(1000) [s]

0 15,187632 0,195708 1,143771

10 25,560149 0,145964 1,266955

20 39,508425 0,262731 1,285819

30 54,102866 0,328410 1,259663

40 69,55985 0,393291 1,187533

50 84,931678 0,480012 1,145374

60 100,339924 0,498418 1,161129

70 115,254103 0,507936 1,356296

80 130,613401 0,749435 1,222092

90 145,464207 0,827996 1,255088

100 161,582399 0,704458 1,352546

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 24

In summary, estimating the performance achievable by MPC frameworks is difficult because it requires
reasoning about “rounds of communication”, which is a rather unintuitive notion that additionally
depends on implementation details of the specific frameworks. However, we found MPyC to be the
most appealing of the frameworks we investigated. It combines ease of setup and use with excellent
efficiency and speed (if one keeps in mind that measurements obtained locally are in no way indicative
of real-world performance). However, more testing is needed to better understand the performance
for specific tasks encountered in SlotMachine and future work will do a deep dive in the
implementation of optimization tasks for assignment problems with both, deterministic algorithms as
well as evolutionary ones.

3.4.1 Systems based on Garbled Circuits

For evaluation, we implemented the same simple functionality in all garbled circuit frameworks
presented in Section 3.2. The task was to find and return the maximum element of two unsorted lists,
which is related to the main algorithms applied in basic auction protocols. In fact, the problem already
comprises substantial complexity when it comes to the computational task involved. Every resulting
program would be tested by running it in two different terminals on the same machine, being given
two different, but equally long lists of integers.

Even though we were in all cases able to write programs that produced the correct solution, we found
that not all of them would terminate reliably, that is: one or both of the running instances would keep
running (sometimes consuming CPU time, sometimes not) and not shut down without user
intervention. This prevented us from performing a systematic performance evaluation of several of the
systems. The results are summarized in Table 3 and Figure 1.

input size system number of AND gates

2 * 100 ObliVM 602620

 ABY 12736

 OblivC (linear) 12800

 OblivC (recursive) 19104

2 * 500 ObliVM 121715434

 ABY 63936

 OblivC (linear) 64000

 OblivC (recursive) 95904

 Table 3: Peformance comparison of GC frameworks

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 25

 Figure 1: Comparison of variants based on garbled circuits (GC)

4 Verifiable Computing (VC) for Auditing

4.1 Introduction

Because MPC has only limited scalability and the feasible number of compute nodes will be between
3 and 7, the trustworthiness of the system could have some serious issues. In the end the system will
still be an outsourcing scenario from the point of view of individual bidders who will not be able to run
their own nodes and will have to trust the system. This means that security is governed by the non-
collusion assumption of the MPC system which is reasonable for the privacy protection of individual
bids, but not so appealing when it comes to transparency. With a system straightforwardly realized as
described, a bidder has no means to check whether the computation was done correctly, and their
own bid was also considered as expected. To allow bidders to do their own checks on the computation,
we have to add additional technologies which introduce public verifiability for auctions allowing the
bidder to check that the auction was run correctly, i.e., the highest bid won, and their own bid was also
considered. This objective should hold up to the extreme case where all the parties involved in the
computation are corrupted, and even if the party who wants to verify the result was not participating.
However, the technologies have to work in a way that still protects the privacy of the bids, i.e., no
single entity or dishonest minority is able to recover the bids.

A first mechanism for auditable MPC has been presented in [34] which was designed to make in
particular the SPDZ type of protocols publicly auditable. The approach is already an improvement over

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 26

the traditional solution to this, which requires every party to commit to all their secret data and to
prove in zero-knowledge the correct computation of every outgoing message they send. In principle,
the approach introduces commitments on the input values which are then used as anchor to retrace
the computation by the auditor or anyone who has access to the bulletin board. This approach
introduces an auditor which has to perform substantial computational work. Furthermore, in addition
to an already very expensive offline phase in the SPDZ protocol (which is already a bottleneck to be
avoided in SlotMachine), the generation of proofs for all intermediate results leads to unusable
performance for any practical application. Nevertheless, the idea of only proving relations on
commitments instead of plaintext data is extremely useful for our purposes and the combination with
blockchain.

Fortunately, zero-knowledge proof techniques made tremendous progress in recent years, especially
since the introduction of “Zero-Knowledge Succinct Non-Interactive Argument of Knowledge.” These
so called zk-SNARKS can be a game changer in the design of verifiable computing as desired in
SlotMachine. Hence, it is now feasible to use zero-knowledge proof techniques to verify computation
in a naive way and still get extremely efficient systems. In the following we give a short overview of
the relevant protocols we identified which are also accompanied by open-source software
implementations. As the development of the protocols itself would be out of scope for SlotMachine,
we will research methods to integrate one of the best fitting existing solutions into our system and
estimate the expected performance.

4.1 Relation to SlotMachine Requirements

VC has been selected as a method to increase the trust into the systems. It is complementary to MPC
and will help to trace and monitor the correct working of the system for relevant stakeholder, ideally
for all participants in the system. The technology will be used to address the following non-functional
requirements defined in D2.1:

Perf_1, Perf_2, Perf_3 The system parameters must be supported to be
practical.

Priv_6, Priv_7, Priv_12 Will be core method to verify the correct
behaviour of AU and PE without revealing
sensitive information. Cloud also help to protect
privacy of credit system.

Because the VC sub-system must be compatible with the MPC technology used and integrated with
PE, it is also relevant for the following functional requirements.

Pe_13, Pe_14, Pe_15, Pe_16, Pe_17 VC method must be interoperable with PE and
also partly integrated with it.

Mpc_15, Mpc_16, Mpc_17 It will help to assure the correctness of the AU
input in privacy preserving way.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 27

4.2 Overview of Protocol Families

4.2.1 Systems based on linear PCPs

Recent advances in SNARKs (Succinct Non-interactive Arguments of Knowledge) are making it more
and more feasible to outsource computations to the cloud while obtaining cryptographic guarantees
about the correctness of their outputs. The most prominent protocols used today by far are Pinocchio
[35] and the further optimized version proposed by Groth et al. [36], [37]. They are extremely efficient
for practical applications and made their way already in many mainstream applications. The major
drawback of this solutions for standard applications where the prover is in possession of the witness,
is the “toxic waste” needed. This means that the system makes use of some global secure parameters
which must be used in the setup phase but need to be deleted afterwards for secure operation. In fact,
anybody in possession of the secure parameters to generate the so-called common reference string
(CRS) can generate arbitrary proofs without knowing the witness.

To overcome the drawback for this type of SNARKs, novel systems have been proposed as presented
in the next chapters. Nevertheless, novel extensions have also been developed which help to
circumvent the problem for many application scenarios by making the CRS updateable and/or
universal [38]–[40]. The main existing implementations of this approach are PySNARK5 and libsnark6.

Nevertheless, all work mentioned so far does not deal with the privacy of the inputs of the
computation, therefore, it is natural to ask if this technology can be combined with MPC. Ideally in
SlotMachine the privacy engine should be able to generate proofs for correct operation but does not
have access to the inputs of the individual parties in plaintext. The only known proposal so far in this
direction was by Schoenmakers in his Trinocchio system [41]. As its name suggests, it is based on
Pinocchio [35], and allows for cryptographically verifiable computations, potentially with less effort
than the computation itself. Moreover, in a follow-up proposal Pinocchio was made adaptive (or “hash-
and-prove”) and even combined in with ideas from Trinocchio [42] leading to an adaptive zero-
knowledge protocol for computation independent commitments also compatible with MPC.

Although the current state of the art seems very promising it still has various problems to overcome
for application in SlotMachine. It is unclear if and how to combine universal zk-SNARKS with MPC-
based Pinocchio and if they could be lifted to be used with more efficient Groth version or another
proof system in general. Allowing for a trustworthy —possibly also done by MPC— computation of a

CRS also depends on the use case.

4.2.2 Discrete log-based systems

In [43] the authors provide a zero-knowledge argument called BCCGP-sqrt for arithmetic circuit
satisfiability. It is based on an efficient zero-knowledge argument of knowledge of openings of two
Pedersen multi-commitments satisfying an inner product relation. It has logarithmic communication
complexity as well as logarithmic interaction and linear computation complexity for both the prover
and the verifier.

5 https://github.com/Charterhouse/pysnark
6 https://github.com/scipr-lab/libsnark

https://github.com/Charterhouse/pysnark
https://github.com/Charterhouse/pysnark
https://github.com/scipr-lab/libsnark

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 28

A more versatile and extended version of the above has been presented in [44]. The protocol is called
Bulletproofs and requires no trusted setup. Bulletproofs are used to show that an encrypted plaintext
is well formed, e.g., that it is within a given margin or range without revealing information about the
plaintext of the encrypted message. Contrary to SNARKs, Bulletproofs do not depend on a CRS
generated from toxic waste, however, verification is costlier. Nevertheless, it supports proof
aggregation with only O(log(m)) overhead and better amortized cost.

Interestingly, Bulletproofs were developed to increase the privacy of cryptocurrencies, which is also
relevant in the context of SlotMachines. By application of this technique, transaction can be proven
valid without revealing money or token flows. Various implementations are mentioned on the
homepage7. Additionally we found another useful version of Bulletproofs in the repository of Hyrax8.

According to our analysis, Bulletproofs together with Pedersen commitments seem an alternative
approach to the adaptive Pinocchio variant of zk-SNARKS. It does not require any trusted setup, range
proofs are supported and can even be batched. However, it is unclear if it can be combined with MPC
and more research is needed if selected for SlotMachine.

Hyrax [45] is another framework for proofs based on discrete logarithms and an extension to
Bulletproofs. According to the authors, Hyrax’s proofs are configured to be small and fast and a useful
point in a large trade-off space for this type of proof systems. The software repository is located on
GitHub9.

4.2.3 Short PCP

Most prominent and available system from this category is called zk-STARK [46]. It is a zero-knowledge
proof system that no longer relies on a trusted setup where the “toxic waste” parameters are
initialized. This together with the long-term post-quantum security property make it a very attractive
system for many applications. The name zk-STARK stems from the basic properties of the scheme. It is
zero-knowledge, non-interactive, asymptotically optimal in efficiency and transparent.

Currently zk-SNARKs are roughly 1000x shorter than zk-STARK proofs, so they cannot easily replace
SNARKs in all applications, it has to be ensured that the use case can support the overhead in size.
Additionally, as discussed in [46], many of the alternative systems which have been implemented to
realize zero knowledge proofs outperform zk-STARK for sufficiently small-size computations, for low-
depth parallel computations, and/or for batched and amortized computations. Although this might not
be a problem for the SlotMachine use case it seems that the hash-based nature of zk-STARK, which
provides the post-quantum security, is problematic for MPC integration. We are not aware of any
attempt to realize multi-stakeholder proofs with input privacy based on MPC or other methods.
Therefore, this technology is not in the focus for PE integration but may be useful for related tasks in
SlotMachine. A mature implementation of STARKs is available on GitHub10.

7 https://crypto.stanford. edu/bulletproofs/
8 https://github.com/hyraxZK/bccgp
9 https://github.com/hyraxZK/hyraxZK

10 https://github.com/elibensasson/ libSTARK

https://crypto.stanford.edu/bulletproofs/
https://github.com/hyraxZK/bccgp
https://github.com/hyraxZK/hyraxZK
https://github.com/elibensasson/libSTARK
https://crypto.stanford.edu/bulletproofs/
https://crypto.stanford.edu/bulletproofs/
https://github.com/hyraxZK/bccgp
https://github.com/hyraxZK/hyraxZK
https://github.com/elibensasson/libSTARK
https://github.com/elibensasson/libSTARK

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 29

4.2.4 Other Solutions

Another type of zero-knowledge proof system which is very efficient and relevant for verifiable
computing is represented by ZKBoo [47] and ZKB++ [28]. They have been used efficiently in MPC-in-
the-head computations, but we doubt that they can be easily integrated with basic MPC. They work
on Boolean circuits, which is not what we need in SlotMachine. Implementations for ZKBoo11 are
available and ZKB++ is part of the picnic submission to the NIST post-quantum cryptography
challenge12. They are also not succinct which makes them less efficient for the verification of larger
computations and no adaptive variants have been proposed so far to work on committed data.

The same is true for Ligero [48], a lightweight sublinear argument of knowledge without a trusted
setup. It is also a relatively simple protocol for NP with communication complexity proportional to the
square-root in the circuit size. It has better performance for larger circuit sized than ZKB++ but is based
on collision resistant hash functions, which renders it less useful in combination with MPC for input
privacy and cannot be used in the PE.

4.3 Overview of Available Frameworks

Contrary to our analysis of MPC, which is based on intensive testing and benchmarking, for verifiable
computing approaches we only did code review and analysis but no implementations. Benchmarking
results will be added in later reports when dedicated tests for our specific use case and the respective
MPC protocol have been done. Nevertheless, for our first review the following software packages have

been analysed.

4.3.1 PySNARK

Summary: Library for programming zk-SNARKs directly in Python

Location: https://github.com/meilof/pysnark

Authors / Maintainer: Meilof Veeningen, Philips Research

Dependencies / Required Software

• Python 3
• qaptools (optional backend)
• libsnark (optional backend)
• snarkjs (optional backend)

Advantages:

11 https://github.com/Sobuno/ZKBoo
12 https://github.com/Microsoft/Picnic

https://github.com/Microsoft/Picnic
https://github.com/meilof/pysnark
https://github.com/Sobuno/ZKBoo
https://github.com/Microsoft/Picnic

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 30

• Easy to use
• Easy to set up (depending on backend)

Disadvantages:

• Little documentation

Development Status: Active, but only 1 developer (last commit June 2021)

4.3.2 libsnark

Summary: A C++ library for zkSNARK proofs

Location: https://github.com/scipr-lab/libsnark

Authors / Maintainer: SCIPR Lab

Dependencies / Required Software

• GCC/Clang, CMake, GMP
• libff
• libfqfft
• ate-pairing
• xbyak
• libsnark-SUPERCOP

Advantages:

• De-facto standard in research community

Disadvantages:

• Many dependencies, difficult to set up
• Not production-ready

Development Status: Somewhat active (last commit July 2020)

https://github.com/scipr-lab/libsnark

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 31

4.3.3 libSTARK

Summary: A library for zero knowledge (ZK) scalable transparent argument of knowledge (STARK)

Location: https://github.com/elibensasson/libSTARK

Authors / Maintainer: Eli Ben-Sasson, SCIPR Lab

Dependencies / Required Software

• GCC, OpenMP

Advantages:

• Under heavy development and progressing fast

Disadvantages:

• Not production-ready

Development Status: Inactive (last commit December 2018)

4.3.4 Bulletproofs

Summary: Bulletproofs are short non-interactive zero-knowledge proofs that require no trusted
setup.

Location: https://crypto.stanford.edu/bulletproofs/

Various implementations exist:

• https://github.com/apoelstra/secp256k1-mw/tree/bulletproofs:

Summary: An implementation of Bulletproofs in C by Andrew Poelstra and Pieter Wuille.
Uses constant time operation for proving and is very fast. Includes a tool for converting
Pinocchio circuits to Bulletproof circuits and generating proofs for arbitrary statements.

Authors / Maintainer: Andrew Poelstra

Development Status: Unclear (project is branch of a fork of a fork)

• https://github.com/bbuenz/BulletProofLib:

Summary: An implementation of Bulletproofs in Java. Includes a general tool for
constructing Bulletproofs for any NP language using the Pinocchio tool chain. Prototype
code.

Authors / Maintainer: Benedikt Bünz

Development Status: Inactive, only one developer (last commit February 2019)

• https://github.com/dalek-cryptography/bulletproofs:

Summary: A pure-Rust implementation of Bulletproofs using Ristretto.

https://github.com/elibensasson/libSTARK
https://crypto.stanford.edu/bulletproofs/
https://github.com/apoelstra/secp256k1-mw/tree/bulletproofs
https://github.com/apoelstra/secp256k1-mw/tree/bulletproofs
https://github.com/bbuenz/BulletProofLib
https://github.com/bbuenz/BulletProofLib
https://github.com/dalek-cryptography/bulletproofs
https://github.com/dalek-cryptography/bulletproofs

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 32

Authors / Maintainer: Henry de Valence, Cathie Yun, and Oleg Andreev (Dalek
Cryptography)

Development Status: Somewhat active (last commit January 2020)

• https://github.com/hyraxZK/bccgp

Summary: Independent re-implementations of two protocols due to Bootle et al. and Bünz
et al.

Authors / Maintainer: Riad S. Wahby

Development Status: Inactive (Single commit in February 2018)

4.4 Evaluation Results

Finally, we give two quick overview tables found in [49] and [45]. They show the main properties of
the different approaches which are important for selection in application design as discussed in the
previous sections. They are shown in Figure 3 and Figure 4.

Figure 3: Theoretical comparison of universal realized ZK systems from [49].

Figure 4: Comparison of ZK systems from Hyrax [23].

Performance measurements have been conducted for PySNARK/qaptools. To test the overall
performance, we implemented basic tests. In Table 4 we summarize first results for the task of finding
the maximum element in a list of varying size and producing a proof that the result is indeed the
maximum element (time in seconds) - sizes of proof and verification keys remain constant at about
2,5 kB each. The first tests are very promising, and SNARKs could be a valuable tool in SlotMachine.

https://github.com/hyraxZK/bccgp

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 33

However, more research and implementation work is needed to learn more insights, especially for
combination with MPC.

N Data

generation

Program
execution

Setup
(equations,
keys)

Proof
generation

Proof

verification

1 0,032 0,001 0,186 0,035 0,038

10 0,054 0,008 1,351 0,165 0,039

100 0,285 0,063 11,940 1,280 0,047

1000 2,567 0,595 148,410 18,986 0,118

Table 4: Performance figures for proof systems.

5 Evaluation of Blockchains

5.1 Introduction

As we have already mentioned, our system should support the PBFT consensus, which enables
managing the possible adversaries in the network. Moreover, we aim for a solution which is optimized
for inter-organizational logic, flexible enough to accommodate changes, high-performance to compete
with the major, non-BFT, consensus algorithms that exist today, such as etcd, zookeeper, consul, etc.,
all of that while providing greater resilience, security guarantees, and flexibility for application
developers. Therefore, based on this, we have selected Tendermint, as a practical blockchain solution
that supports PBFT consensus protocol. Tendermint has high performance and can achieve thousands
of transactions per second (tx/s) on dozens of nodes distributed around the globe, with latency of
about one second, and performance degrading moderately in the face of adversarial attacks [26]. In
this section we present the results of the evaluations we have performed on the Tendermint scalability.

5.2 Tendermint evaluation

To the best of our knowledge, there is no publicly available evidence on the performance of
Tendermint in case the number of nodes reaches hundreds or thousands. The performance testing
with thousands of nodes would require a lot of computational resources and therefore would be
expensive. We have performed some tests with 100 nodes. The tests are performed on the Amazon
Cloud AWS EC2 machines, used for the Tendermint nodes. Tendermint is deployed using the testnets
software (see https://github.com/informalsystems/testnets for more details), which internally uses
Ansible and Terraform for the infrastructure orchestration and allocation of the required resources.
The metrics calculated during the tests are stored in the Influx database and visualized using the
Grafana UI.

The first experiment is performed with the test load of 10 tx/s sent to each of the 100 nodes within
the 3 minutes time slot. The second and the third experiment are performed with the test load of

https://github.com/informalsystems/testnets

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 34

1000 tx/s. The number of the peer nodes, i.e., the nodes each node is connected to, for the first two
experiments is 100 for node0 and 1 for the other nodes. That network topology is automatically chosen
by Tendermint, based on the configuration for the number of inbound and outbound connections,
which is in this case set to 100. In addition, no persistent peers, i.e., the peers to which the connection
must be established independent of what is specified in the configuration file, are specified. In the
third experiment, for each node we have specified 10 persistent peers, in the following manner: node1
-> node10, node20, node30, …, node100; node2 -> node11, node21, node31, …, node1; …; node100 -
> node9, node19, node29, node39, …, node99. Additionally, for each node we set the maximum
number of inbound and outbound peers to 10, so that each node can create 30 total connections at
most (10 to the persistent peers + 10 for the inbound connections + 10 for the outbound connections).
This network topology ensures better communication among the nodes, where each node can reach
each other node in maximum 3 hops (in both cases when the network chooses the outbound
connections for e.g. node1 to: either node5 or node6, node15, node25, …, node95, beside the
connections to the persistent peers, each other node can be reached in maximum 3 hops). The figures
below show the block interval time metric for each experiment. It represents the time needed to
append a new block to the blockchain. As we can see from the figures, for the first experiment it is on
average ~7s, for the second experiment ~30s, and for the third experiment ~3s. The specified network
topology seems to largely influence the block interval time. In the first 2 experiments, node0
experienced the network congestion, since it was connected to all other nodes. The block interval time
from the third experiment shows that nodes can still communicate with a relatively high
performance.13

Figure 2: The block interval time for the first experiment.

13 The block interval time might to a certain extent be influenced by the limited computational resources of the
machines used for the nodes, which are, in this case, the Amazon t3.medium machines.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 35

Figure 3: The block interval time for the second experiment

Figure 4: The block interval time for the third experiment

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 36

6 Conclusions and Recommendations

In our work on MPC we did intensive testing. The task turned out to be very time consuming with many
frameworks to check for different properties. Moreover, the frameworks are often missing
documentation and contain many suspected bugs and unexpected behaviour. For the time being, we
found MP-SPDZ to be the most comprehensive solution and best suited for testing, and MPyC to be
the most flexible one for rapid prototyping and testing. However, because results from one
implementation cannot easily be mapped to another, we decided to implement core algorithms on
both systems for comparison and consistency checking. In case of 2PC, we found ObliVM to be the
most mature and reliable system, and we used it as a reference for benchmarking against garbled
circuit approaches.

For the case of zk-SNARKS it turned out that this is a very dynamic field with lots of progress. We found
many different implementations, with some being quite mature. However, when it comes to our
specific use case with MPC integration, no proper framework was found, and no implementations are
available.

Based on the findings in this report and benchmarking results we extracted the current set of
recommendations to be followed in the upcoming project phase of SlotMachine.

• As already expected, the existing MPC systems lack scalability for direct application by AUs in
the SlotMachine. It is not feasible to let every AU be an MPC node. Therefore, we recommend
distributing the MPC system over 3-4 master nodes which can be statically or dynamically
assigned by the PE.

• Given the first performance results we also expect that a passively secure implementation of
this configuration achieves the performance goals expected by the requirements specification
task of SlotMachine. This would be a good starting point for further exploration. Actively
secure solutions are not required by the project, although new results show only minimal
slowdown in the honest majority setting. Nevertheless, because we are aiming at a publicly
verifiable MPC solution the active security would not add benefits in terms of robustness.

• To assure transparency we recommend starting from the approach on adaptive Pinocchio [42].
It seems well suited for our use case and integrates with MPC. Therefore, we will implement
this protocol in a next step and identify the gaps for application in SlotMachine, once the
platform functionality is fully specified. However, research should already be undertaken to
circumvent the already known limitations based on the global CRS.

• Finally, the Tendermint blockchain solution selected turned out to scale very well. Results
show that it is feasible to let every AU run a blockchain node if wished, i.e., a distributed ledger
between all AUs is possible. As all parties are known and have to be registered the
permissioned model is also a good fit.

Based on this finding, the currently envisioned architectural proposal for the integration of the
presented technologies on a very high level is presented in Figure 5. The flow resembles a blockchain
based sealed-bid auction where bids (margins and weights in our case) are committed to on the
blockchain in the first phase. However, instead of opening the inputs in the second phase, they are
sent to the MPC system within the PE which computes (optimizes in our case) the best solution and

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 37

reveals the result together with a proof showing the improvement over previous flight sequences.
Because the proof is zero-knowledge and all inputs are hidden we achieve privacy and correctness at
the same time. Furthermore, all AUs will be able to verify the correctness on their own, increasing the
trust in the SlotMachine platform. However, this is only the currently envisioned architecture and
many research questions must be solved on the way, i.e., there are many technical risks associated
with this approach. It is currently not clear if this full integration is possible efficiently and if all aspects
are implementable with the given resources. The proposal also lacks the integration of the credit/token
system currently under design to establish fairness and equity. Nevertheless, the presented
architecture is very appealing from their properties and WP3 should work towards this direction.

Figure 5: Proposal for the cryptographic

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 38

7 References

[1] N. Pilon, A. Cook, S. Ruiz, A. Bujor, und L. Castelli, „Improved Flexibility and Equity for Airspace
Users During Demand-capacity Imbalance An introduction to the User Driven Prioritisation
Process“, 2016. [Online]. Verfügbar unter:
https://westminsterresearch.westminster.ac.uk/item/q2539/improved-flexibility-and-equity-
for-airspace-users-during-demand-capacity-imbalance-an-introduction-to-the-user-driven-
prioritisation-process

[2] P. Bogetoft u. a., „Secure Multiparty Computation Goes Live“, 2009, S. 325–343. doi:
10.1007/978-3-642-03549-4_20.

[3] H. S. Galal und A. M. Youssef, Verifiable Sealed-Bid Auction on the Ethereum Blockchain. 2018.
[4] S. J. Rassenti, V. L. Smith, R. L. Bulfin, S. Rassenti, V. Smith, und R. L. Bulfin, „A Combinatorial

Auction Mechanism for Airport Time Slot Allocation“, Bell Journal of Economics, Bd. 13, Nr. 2, S.
402–417, 1982.

[5] S. De Vries und R. V. Vohra, Combinatorial auctions: A survey, Bd. 15. 2003. doi:
10.1287/ijoc.15.3.284.16077.

[6] M. Ul Hassan, M. H. Rehmani, und J. Chen, „DEAL: Differentially Private Auction for Blockchain
based Microgrids Energy Trading“, IEEE Trans. Serv. Comput., S. 1–1, 2019, doi:
10.1109/TSC.2019.2947471.

[7] Y. Jiao, P. Wang, D. Niyato, und K. Suankaewmanee, „Auction Mechanisms in Cloud/Fog
Computing Resource Allocation for Public Blockchain Networks“, IEEE Trans. Parallel Distrib.
Syst., Bd. 30, Nr. 9, S. 1975–1989, Sep. 2019, doi: 10.1109/TPDS.2019.2900238.

[8] Y. Jiao, P. Wang, D. Niyato, und Z. Xiong, „Social Welfare Maximization Auction in Edge
Computing Resource Allocation for Mobile Blockchain“, in 2018 IEEE International Conference
on Communications (ICC), Kansas City, MO, Mai 2018, S. 1–6. doi: 10.1109/ICC.2018.8422632.

[9] M. F. Franco, E. J. Scheid, L. Z. Granville, und B. Stiller, „BRAIN: Blockchain-based Reverse Auction
for Infrastructure Supply in Virtual Network Functions-as-a -Service“, in 2019 IFIP Networking
Conference (IFIP Networking), Warsaw, Poland, Mai 2019, S. 1–9. doi:
10.23919/IFIPNetworking.2019.8816843.

[10] H. S. Galal und A. M. Youssef, „Verifiable Sealed-Bid Auction on the Ethereum Blockchain“, in
Financial Cryptography and Data Security, Berlin, Heidelberg, 2019, S. 265–278. doi:
10.1007/978-3-662-58820-8_18.

[11] E.-O. Blass und F. Kerschbaum, „Strain: A Secure Auction for Blockchains“, Springer, Cham, 2018,
S. 87–110. doi: 10.1007/978-3-319-99073-6_5.

[12] I. A. Omar, H. R. Hasan, R. Jayaraman, K. Salah, und M. Omar, „Implementing decentralized
auctions using blockchain smart contracts“, Technological Forecasting and Social Change, Bd.
168, S. 120786, 2021, doi: https://doi.org/10.1016/j.techfore.2021.120786.

[13] D. C. Sánchez, Raziel: Private and Verifiable Smart Contracts on Blockchains. 2017.
[14] A. Kosba, A. Miller, E. Shi, Z. Wen, und C. Papamanthou, „Hawk: The Blockchain Model of

Cryptography and Privacy-Preserving Smart Contracts“, in 2016 IEEE Symposium on Security and
Privacy (SP), 2016, S. 839–858. doi: 10.1109/SP.2016.55.

[15] H. S. Galal und A. M. Youssef, „Succinctly Verifiable Sealed-Bid Auction Smart Contract“, in Data
Privacy Management, Cryptocurrencies and Blockchain Technology - ESORICS 2018 International
Workshops, DPM 2018 and CBT 2018, Barcelona, Spain, September 6-7, 2018, Proceedings, 2018,
Bd. 11025, S. 3–19. doi: 10.1007/978-3-030-00305-0_1.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 39

[16] E. Ben-Sasson, A. Chiesa, E. Tromer, und M. Virza, „Succinct Non-Interactive Zero Knowledge for
a von Neumann Architecture“, in 23rd USENIX Security Symposium (USENIX Security 14), San
Diego, CA, Aug. 2014, S. 781–796. [Online]. Verfügbar unter:
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-
sasson

[17] M. Andrychowicz, S. Dziembowski, D. Malinowski, und L. Mazurek, „Secure Multiparty
Computations on Bitcoin“, in 2014 IEEE Symposium on Security and Privacy, Mai 2014, S. 443–
458. doi: 10.1109/SP.2014.35.

[18] I. Bentov und R. Kumaresan, „How to Use Bitcoin to Design Fair Protocols“, 2014, S. 421–439.
doi: 10.1007/978-3-662-44381-1_24.

[19] R. Kumaresan, V. Vaikuntanathan, und P. N. Vasudevan, „Improvements to Secure Computation
with Penalties“, in Proceedings of the 2016 {ACM} {SIGSAC} Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, 2016, S. 406–417. doi:
10.1145/2976749.2978421.

[20] R. Kumaresan und I. Bentov, „Amortizing Secure Computation with Penalties“, in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security, New York, NY,
USA, 2016, S. 418–429. doi: 10.1145/2976749.2978424.

[21] F. Vogelsteller und V. Buterin, „EIP-20: ERC-20 Token Standard“, Nov. 2015, [Online]. Verfügbar
unter: https://eips.ethereum.org/EIPS/eip-20

[22] L. Oliveira, L. Zavolokina, I. Bauer, und G. Schwabe, „To Token or not to Token: Tools for
Understanding Blockchain Tokens“, 2018, doi: 10.5167/UZH-157908.

[23] S. Martins und Y. Yang, „Introduction to Bitcoins: A Pseudo-Anonymous Electronic Currency
System“, in Proceedings of the 2011 Conference of the Center for Advanced Studies on
Collaborative Research, USA, 2011, S. 349–350.

[24] G. Maxwell, „CoinJoin: Bitcoin privacy for the real world“, 2013.
[25] N. Van Saberhagen, CryptoNote v 2.0. 2013.
[26] E. Buchman, „Tendermint: Byzantine fault tolerance in the age of blockchains“, PhD Thesis,

2016.
[27] E. Androulaki, J. Camenisch, A. D. Caro, M. Dubovitskaya, K. Elkhiyaoui, und B. Tackmann,

„Privacy-preserving auditable token payments in a permissioned blockchain system“, in
Proceedings of the 2nd ACM Conference on Advances in Financial Technologies, New York NY
USA, Okt. 2020, S. 255–267. doi: 10.1145/3419614.3423259.

[28] R. Cramer, I. B. Damgard, und J. B. Nielsen, Secure Multiparty Computation and Secret Sharing.
Cambridge: Cambridge University Press, 2015. doi: 10.1017/CBO9781107337756.

[29] D. Evans, V. Kolesnikov, und M. Rosulek, „A Pragmatic Introduction to Secure Multi-Party
Computation“, Foundations and Trends® in Privacy and Security, 2018, doi:
10.1561/3300000019.

[30] Y. Lindell und A. Nof, „A Framework for Constructing Fast MPC over Arithmetic Circuits with
Malicious Adversaries and an Honest-Majority“, in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security - CCS ’17, New York, New York, USA,
2017, S. 259–276. doi: 10.1145/3133956.3133999.

[31] K. Chida u. a., „Fast Large-Scale Honest-Majority MPC for Malicious Adversaries“, Springer,
Cham, 2018, S. 34–64. doi: 10.1007/978-3-319-96878-0_2.

[32] P. S. Nordholt und M. Veeningen, „Minimising Communication in Honest-Majority MPC by
Batchwise Multiplication Verification“, Springer, Cham, 2018, S. 321–339. doi: 10.1007/978-3-
319-93387-0_17.

[33] J. Furukawa und Y. Lindell, Two-Thirds Honest-Majority MPC for Malicious Adversaries at Almost
the Cost of Semi-Honest. 2019.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 40

[34] C. Baum, I. Damg\aard, und C. Orlandi, „Publicly Auditable Secure Multi-Party Computation“,
Springer, Cham, 2014, S. 175–196. doi: 10.1007/978-3-319-10879-7_11.

[35] B. Parno, J. Howell, C. Gentry, und M. Raykova, „Pinocchio: Nearly Practical Verifiable
Computation“, in 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May
19-22, 2013, 2013, S. 238–252. doi: 10.1109/SP.2013.47.

[36] J. Groth, On the Size of Pairing-based Non-interactive Arguments. 2016.
[37] J. Groth und M. Maller, „Snarky Signatures: Minimal Signatures of Knowledge from Simulation-

Extractable SNARKs“, in Advances in Cryptology – CRYPTO 2017, Cham, 2017, S. 581–612.
[38] M. Maller, S. Bowe, M. Kohlweiss, und S. Meiklejohn, Sonic: Zero-Knowledge SNARKs from

Linear-Size Universal and Updateable Structured Reference Strings. 2019.
[39] A. Kosba, D. Papadopoulos, C. Papamanthou, und D. Song, MIRAGE: Succinct Arguments for

Randomized Algorithms with Applications to Universal zk-SNARKs. 2020.
[40] J. Groth, M. Kohlweiss, M. Maller, S. Meiklejohn, und I. Miers, Updatable and Universal Common

Reference Strings with Applications to zk-SNARKs. 2018.
[41] B. Schoenmakers, M. Veeningen, und N. de Vreede, „Trinocchio: Privacy-Preserving Outsourcing

by Distributed Verifiable Computation“, Springer, Cham, 2016, S. 346–366. doi: 10.1007/978-3-
319-39555-5_19.

[42] M. Veeningen, „Pinocchio-Based Adaptive zk-SNARKs and Secure/Correct Adaptive Function
Evaluation“, Springer, Cham, 2017, S. 21–39. doi: 10.1007/978-3-319-57339-7_2.

[43] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, und C. Petit, „Efficient zero-knowledge arguments for
arithmetic circuits in the discrete log setting“, 2016. doi: 10.1007/978-3-662-49896-5_12.

[44] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, und G. Maxwell, „Bulletproofs: Short Proofs
for Confidential Transactions and More“, 2018. doi: 10.1109/SP.2018.00020.

[45] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, und M. Walfish, „Doubly-Efficient zkSNARKs Without
Trusted Setup“, 2018. doi: 10.1109/SP.2018.00060.

[46] E. Ben-Sasson, I. Bentov, Y. Horesh, und M. Riabzev, Scalable, transparent, and post-quantum
secure computational integrity. 2018. [Online]. Verfügbar unter:
https://eprint.iacr.org/2018/046

[47] I. Giacomelli und C. Orlandi, „ZKBoo: Faster Zero-Knowledge for Boolean Circuits“, Usenix
Security, 2016.

[48] S. Ames, C. Hazay, Y. Ishai, und M. Venkitasubramaniam, „Ligero: Lightweight sublinear
arguments without a trusted setup“, 2017. doi: 10.1145/3133956.3134104.

[49] S. Setty, Spartan: Efficient and general-purpose zkSNARKs without trusted setup. 2019.

D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS

SlotMachine!!

 41

