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Abstract 

This document describes the state-of-the-art in technical areas relevant for SlotMachine. In particular 
it gives an overview on privacy enhancing technologies which are used to establish privacy preserving 
marketplaces in a decentralised fashion. It further analyses the role of blockchain in this context and 
how it could be leverages to further increase security and trust in the system. For all key technologies 
used we did a literature review and analysed existing open source software frameworks for their 
maturity and performance. 

One of the core technologies analysed is multiparty computation (MPC) which enables the evaluation 
of functions while keeping the inputs private. It will be used in SlotMachine to replace the trusted party 
typically needed to evaluate the private bids and priorities of airspace users during the optimization 
step. Secondly, we looked into methods for verifiable computing and how the overall process could be 
made more transparent although the private inputs must be kept confidential. Efficient and practical 
zero-knowledge proof systems have been studied and the most promising candidates to realize some 
form of public verifiability and traceability are highlighted. Finally, blockchain solutions to realize a 
dedicated permissioned ledger as a trust anchor in SlotMachine have been analysed. The scalability 
and performance were measured in practical deployment scenarios. 

Based on the results from our research and testing we finally conclude the results, give some 
recommendations for further development and propose a first high-level architecture combining the 
technologies. 
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1 Introduction 

1.1 Purpose of the document 

This document summarizes the state-of-the-art for relevant concepts, methods, technologies and 
frameworks which are used in SlotMachine to achieve security, privacy and transparency. In particular, 
cryptographic techniques from the fields of multiparty computation (MPC), verifiable computation 
(VC) and blockchain have been researched and evaluated. Besides the literature review, we also report 
results from performance and scalability testing done with the most promising open-source 
frameworks. The tests were done to learn more about practical aspects of available solutions and their 
shortcoming when it comes to adoption for SlotMachine. The document basically reports results from 
the work conducted in T3.1 (MPC), T3.2 (blockchain) and T3.3 (VC) and led to recommendations for 
the system design and requirements as well as a R&D agenda for the subsequent tasks. 

1.2 Scope 

The document covers the state-of-the-art for security, privacy and transparency aspects in 
SlotMachine. It is focused on technical means and cryptographic solutions which will be potentially 
researched and used in the project. The scope is on the Privacy Engine component as defined in D2.2, 
which comprises most of the cryptographic solutions. Additionally, blockchain is foreseen to be used 
as a ledger by all participants and to also run the token system. 

1.3 Intended readership 

This document is intended for both internal and external audiences. Internally it is mainly aimed at the 
technical team members in WP3 but also contributes important insights for work in WP2 and WP4. 
Additionally, it serves as the basis for further selection of technologies and existing implementations 
in subsequent WP3 developments. In particular, the insights are key for the design of the Privacy 
Engine (PE) and the integration of blockchain in SlotMachine, especially with respect to security, 
privacy and trustworthiness. However, it could be also a useful resource for other project participants 
and the public because it provides a comprehensive overview of novel cryptographic methods not 
widely known to non-cryptographers and security experts. 

1.4 Structure of the document and relation to other deliverables 

The remainder of the document is structured along the main technologies analysed and comprises the 
following chapters. 

Chapter 2 gives an overview on privacy preserving marketplaces and how they could be realized with 
the technologies proposed for SlotMachine. 

Chapter 3 presents relevant aspects of multiparty computation (MPC) which enables the evaluation of 
functions while keeping the inputs private. Most important open source frameworks are compared 
and benchmarking results presented to give a first indication for MPC usage in SlotMachine. 
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Chapter 4 is focused on methods for verifiable computing (VC) and how the overall process could be 
made more transparent although the private inputs must be kept confidential. Efficient and practical 
zero-knowledge proof systems have been studied and the most promising candidates to realize some 
form of public verifiability and traceability are highlighted. 

Additionally, in chapter 5 blockchain solutions to realize a dedicated permissioned ledger as a trust 
anchor in SlotMachine have been analysed. The scalability and performance were measured in 
practical deployment scenarios. 

Based on the results from our research and testing we finally conclude in chapter 6, give some 
recommendations for further development and propose a first high-level architecture combining the 
technologies.  
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2 Privacy Preserving Market Places 

2.1 Overview 

SlotMachine is dedicated to the development of a platform to optimize management of airport 
departure and landing slots. The platform shall enable a more flexible, fast and scalable semi-
automated flight prioritisation process for airlines in a fair and trustworthy way. Built with a privacy-
first approach it will protect sensitive airline data from competitors and airport operators but fully 
unleash the potential of inter-airline flight swapping in real-time. The goal is to minimise the overall 
costs caused by delays, which can be done by allowing airlines to almost dynamically rearrange and 
prioritise certain flights. This is already possible within a fleet [1] but to minimise costs, airlines need 
to be able to prioritise delayed flights across airline boundaries and would like to do so without 
prolonged negotiations. This is inherently difficult because airlines as competitors are very careful not 
to disclose any business secrets such as the flight-specific estimated costs associated with delays of 
different severities. 

SlotMachine tackles this challenge by combining tools for privacy-preserving computation on data 
based on multiparty computation (MPC) with evolutionary algorithms and blockchain technology to 
build a decentralised system that enables collaboration for optimal flight sequencing in challenging 
conditions. It introduces a new approach to cooperative slot management and establishes a platform 
for on-demand automated operation. The platform serves as a marketplace for airlines with the overall 
aim of developing a novel flight prioritisation platform – the SlotMachine architecture – to improve 
the use of available resources at airports and reduce costs for airlines.  

The market mechanism as currently foreseen in the project resembles a mixture of optimization 
problem and auctions system. It is at its core an optimization task closely related to queue/slot 
reordering/scheduling but also takes into account preferences of airspace users (AUs) and enable them 
to bid on certain flights in order to prioritize them. The bidding will be based on a dedicated token or 
credit system which is used to establish fairness and equity in the long run, i.e., over multiple 
reordering sessions. However, it should be stressed that the credits are not intended to be traded in a 
classical fashion with fiat currencies on other markets, they should only help in supporting fairness and 
equity between airlines. 

In this report we review the state-of-the-art of relevant core technologies to support the increased 
privacy and trustworthiness requirements envisioned by the project. From an architectural perspective 
SlotMachine will be a decentralized platform where no single entity has full control over all information 
and decisions. The basic architectural concept in SlotMachine from a technical point of view is 
presented in D2.2 and the requirements are assessed in D2.1, including the security, privacy and 
transparency requirements mainly supported by the technologies analysed here.  

SlotMachine makes heavy use of modern cryptography and the main cryptographic components will 
be combined into the Privacy Engine (PE) which encapsulates all complex cryptographic tasks in an 
easy to use manner from the rest of the platform and represents the (distributed) place where 
sensitive information is managed, i.e., specifically confidentiality is protected. In essence, the Privacy 
Engine is a module enabling multiparty computation which processes sensitive information in 
encrypted form only. If encrypted information is never restored for processing —as is typically the case 
in conventional cloud computing— security and privacy gains can be realized. This is especially true in 
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outsourcing scenarios where multiple stakeholders share private information to collaborate on joint 
data sets. However, because computation on encrypted data introduces significant computation and 
communication overhead we had to carefully analyse and assess existing approaches to understand 
their properties and limitations. We also report results of extensive performance testing and code 
analysis of available open-source frameworks for MPC to compare their capabilities and maturity with 
respect to our application. 

Besides the protection of sensitive AU data, the system as a whole should also be trustworthy. It would 
be especially interesting to add technical means for auditing and other assurance mechanisms in order 
to convince users of correct consideration of their input data in individual optimization runs and fair 
treatment over multiple runs. Blockchain is adequate for this task and will be used to maintain 
metadata about optimization runs. The main property of blockchain relevant for our use case is 
immutability, i.e., it serves as a public append-only log to store information about flight prioritization 
in the past, and optionally to also run the credit system envisaged. The blockchain itself should be run 
as distributed as possible but still in a closed user group, the AUs. In this report we will therefore look 
particularly into permissioned blockchain/consensus protocols and their scalability. 

Additionally, to combine both technologies — MPC and blockchain — in a fruitful way we had to 
investigate possibilities to store data into blockchain in oblivious form while still making sense of the 
data. In particular, we looked into possibilities to use zero-knowledge proof techniques to maintain 
confidentiality of sensitive data but still enable public verifiability aspects, i.e. let AUs check the validity 
of flight swaps but without leaking prioritization decisions. Therefore, we analysed existing methods 
and open source frameworks, which also have been tested. 

2.2 Market Places and Privacy 

Although a heuristic optimization algorithm is used to compute swapping proposals, the idea of user-
driven prioritisation is also closely related to auction systems, especially with respect to prioritization 
(bidding) of individual preferences. Therefore, we briefly mention most important auction mechanisms 
and important privacy aspects regarding different phases. This is particularly interesting because 
privacy aspects are key in auctions to work correctly and achieving fair market prices. If individual 
bidders gain additional information they are not supposed to know, they have a clear advantage and 
could significantly impact the markets. Especially, if trusted authorities are needed to run auctions, 
they could become a single point of trust and failure. Therefore, in many situations —as for flight 
swapping in SlotMachine— it is not feasible to find an entity which is fully trusted by all participants to 
handle sensitive information and to correctly process them without bias. Imagine a basic sealed-bid 
auction where the trusted authority colludes with a bidder which can then easily win any auction 
without paying the true price, but just a bit more than the second highest bidder. Therefore, we are 
interested in decentralized sealed-bid type of auctions/prioritization without any trusted auctioneer. 
This is particularly interesting because the first practical applications for MPC were indeed auctions [2] 
with exactly that goal. 

As summarized in [3] there are four main types of auctions which are of practical interest in typical 
real-live scenarios: 

1. First-price sealed-bid auctions (FPSBA). Bidders submit their bids in sealed envelopes and hand 

them to the auctioneer. Subsequently, the auctioneer opens the envelopes to determine the 

bidder with the highest bid. 
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2. Second-price sealed-bid auctions (Vickrey auctions). It is similar to FPSBA with the exception that 

the winner pays the second highest bid instead. 

3. Open ascending-bid auctions (English auctions). Bidders increasingly submit higher bids and stop 

bidding when they are not willing to pay more than the current highest bid. 

4. Open descending-bid auctions (Dutch auctions). Auctioneer initially sets a high price, which is 

gradually decreased until a bidder decides to pay at the current price. 

Additionally, besides the standard auctions there are many special kinds of auction. Interestingly the 
first proposal for so called combinatorial auctions were based on slot-trading scenarios for airlines [4], 
[5]. This kind of auctions is fundamentally different from the main four types and imposes completely 
different challenges in the computation of winning bids. From a computational perspective they are 
more like optimization problems than sorting tasks and can require a significant amount of 
computational work. However, they are based on the idea of bidding on bundles of resources instead 
of individual ones. In [4] they propose a market mechanism to trade starting and landing slots on 
different airports as bundles and therefore optimize more globally. In SlotMachine the focus is on 
already scheduled flight sequences for departures at a given airport, which is not directly related to 
the problem of combinatorial auctions, but it somehow also resembles an optimization problem. 
 
Regarding security and privacy of auctions, different goals could be desirable. Informally we can 
distinguish the following properties from secure auctions, as have been defined in [5]: 

1. Bid privacy. All bidders cannot know the bids submitted by the others before committing to their 

own. This property is also guaranteed even in a collusion with a malicious auctioneer. 

2. Posterior privacy. Given a semi-honest auctioneer, all committed bids are maintained private 

from the bidders and public users. 

3. Bid Binding. Once the bid interval is closed, bidders cannot change their commitments. 

4. Public verifiable correctness. The auction contract verifies the correctness of the auctioneer’s 

work to determine the auctioneer winner. 

5. Financial fairness. Bidders or auctioneer may attempt to deviate from the protocol and 

prematurely abort to affect the behaviour of the auction protocol. The aborting parties are 

financially penalized while honest parties are refunded after a specific timeout. 

6. Non-Interactivity. Bidders do not participate in complex interactions with the underlying 

protocol of the auction contract. In fact, no extra communications between the bidders and the 

auction contract are required aside from the submission of the bid commitments and the 

associated opening values. 

In SlotMachine we are clearly focusing on bid privacy (1.) in the sense that information to prioritize 

certain flight by airlines must be kept private. At the time of writing, in SlotMachine flight prioritization 

is intended by means of a weight map and additional credits which can be used to further prioritize 

certain flights. This means that exactly this weight map as well as the additional credits spent by AUs 

on their flights have to stay encrypted and are only allowed to stay within the privacy engine. 

Furthermore, we also do not want to reveal the private information provided by airlines after the 

optimization run, thus, we are also aiming for posterior privacy (2.). Bids in the sense of SlotMachine 

contain many business secrets about internal cost structures of airlines and contain a lot of information 

also about related flights and recurrent situations. Keeping AUs preferences secret over the full life 

cycle in the system is essential to keep the airlines participating. Also bid binding (3.) is very important 
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in SlotMachine and will be supported, also by the help of blockchain. Finally, also public verifiability 

(4.) is aspired in SlotMachine, because this is seen as an important property to increase the trust in the 

platform. This goal is especially challenging when it has to be combined with posterior privacy. If all 

bids are revealed after the new swapping proposal was accepted, things would be easier, because the 

original bids could just be opened and verified. However, to do it in encrypted form modern 

cryptographic techniques are needed in form of “Zero-Knowledge Succinct Non-Interactive Argument 

of Knowledge” (zk-SNARKS), especially ones which can be combined with MPC. Finally, financial 

fairness (5.) and non-interactivity (6.) are not in the focus of SlotMachine, although we have planned 

to look into misuse cases regarding AU and also foresee some public verifiable means to check the 

correctness of AU input data. Nevertheless, because all parties are known to each other and because 

we expect the AUs to participate on a continuous basis, it would be rational for them to play with the 

rules to be not expunged from the system. 

2.3 Secure Markets on Blockchains 

Since the emergence of Bitcoin and Ethereum, there has been a huge hype around blockchains. 
Although the hype may be not completely justified from a technical perspective, these novel 
systems still have some potential in several application areas. A system that is built around a 
blockchain as main data structure mainly consists of three parts: 

1. a mechanism for processing transactions 
2. a consensus mechanism 
3. a network protocol 

The network protocol is an important aspect, but it is the least novel of these three parts and does not 
differ much from other distributed systems. The main innovative feature of blockchain-based systems 
is often considered to be the consensus algorithm. Indeed, Bitcoin’s proof-of-work drew a lot of 
attention from the scientific community. On the other hands, it cannot be denied that this kind of 
consensus mechanism suffers from huge problems when applied in practice, the main problem being 
the vast energy consumption. There exist several concepts to alleviate this point, for example proof-
of-stake, but also mechanisms that deviate from the Nakamoto consensus. But the part that offers the 
most interesting possibilities for future systems in a wide range of different application areas is the 
way how transactions are encoded, interpreted and processed. The transactions that are stored in the 
blockchain are connected by a logic that is formulated in some less or more expressive programming 
language. Furthermore, several cryptographic components are included to reduce the minimal level of 
trust that is expected of a single user in these multi-user environments. The next two subsections 
explain the components that can be employed when building markets by utilising blockchain-based 
systems. 

Specific markets often follow their own set of rules, protocols and processes, which can be supported 
by code that allows a level of automation. Because markets are distributed by nature and feature 
different sets of actors, this could be a field of research with a lot of potential in the context of 
blockchain-based systems. Patterns that occur often in various markets are schemes that resemble 
auctions or have similar properties than auctions. Indeed, auctions on smart contracts have drawn a 
lot of attention in research and are also one of the basic examples that are brought up often to show 
the potential of programmable blockchain environments. 
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One type of markets that is especially relevant when examining the question how and if the application 
of blockchains can be beneficial in future are markets for electrical energy. One reason for this are the 
necessary changes due to the need of including more renewable energy sources into the grids and 
thereby changing a lot of requirements for them. Energy grids are expected to get a lot more 
distributed in comparison to the relatively centralised approach of current grids. Also in this context, 
prices can be regulated by auctions. Ul Hassan et al. [6] presented an approach for auctions on 
microgrids that also takes several privacy considerations into account. 

Another relevant area is the allocation of resources of some kind of infrastructure. Jiao et al. [7] 
investigated the topic of auctions for computing resource allocation for cloud computing. They used a 
blockchain-based system with proof-of-work as consensus mechanism. A different approach that 
focusses on efficiency to be suitable for mobile environments is presented in [8]. 

Similar to the classic (forward) auctions are reverse auctions where the roles of buyer and seller are 
swapped. This setting is relevant for construction or infrastructure orders with a trusted actor, possibly 
represented by a state, with the central role of a buyer. Franco et al. [9] described a reverse auction 
for infrastructure supply, including network function virtualization in their design. 

Throughout the several application areas of auctions some requirements and properties pop up 
regularly and can be viewed upon with a more general perspective independently of the specific area. 
Many auctions do not rely solely on public information but require some level of privacy. It is not 
obvious how to get a good level of privacy on an inherently distributed environment with a blockchain 
that should be readable by all the participants of an auction to establish a layer of trust. Galal et al. 
[10] presented a protocol for auctions in an Ethereum network. It included sealed bids with a public 
key encryption and the usage of zero-knowledge proofs. Although strong privacy properties for an 
auction protocol are in general achievable, they are often not desirable in practice due to their strong 
impact on the performance. An auction scheme with a good trade-off between privacy properties and 
performance was given in [11]. They focussed on reducing the number of blocks necessary to complete 
the auction. This is an important performance aspect on a blockchain-based system because the 
transaction throughput is often limited as is the rate at which new blocks are generated. 

As with the general spending of tokens, there can be a connection to not only virtual, but physical 
objects in auctions. Indeed, most of the more interesting application areas deal with some kind of 
physical objects. With smart contracts, this is often done by introducing oracles. In this context, an 
oracle is a trusted entity that reports the relevant part of the state outside of the blockchain system 
on the blockchain. Special measures have to be taken to ensure the trustworthiness of this approach 
as the oracle has such a critical role. Omar et al. [12] presented a concept for auctions with trusted 
timer oracles on Ethereum. 

  



D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS  

 
SlotMachine!! 

  
 

 

 

 13 

 

 

 

2.4 MPC Supported Markets (on Blockchain) 

MPC can be considered the most practical approach for generic computation on encrypted data. This 
means, that virtually any function can be computed in an MPC system in principle, however, due to 
the overhead introduced by MPC protocols they are by orders of magnitudes slower than a classical 
computer. 

Nevertheless, the first realization of a real application was demonstrated in an auction held for the 
Danish sugar beets market in 2009 [2]. This was the first large-scale and practical application of 
multiparty computation and enabled farmers to get a fair market clearing price. They used a local setup 
with three computers in the same room and ran a semi-honest MPC protocol to calculate the clearing 
price. About 4000 values for prices were supported at most and 1229 bidders participated in the 
auction. The inputs from the individual bidders were encoded by verifiable secret sharing and the 

computation lasted for half an hour. 

The basic problem of this setting is the lack of scalability of the MPC protocols itself. This resulted in a 
setup with 3 nodes which prevents from the clients to directly participate in the computation but 
encode the inputs, which still leads to a form of outsourced computation, although a distributed one. 
The improved security in this setting is evident, but to further increase the trustworthiness of the 
system some form of public verifiability would be desirable. 

To cope with this issue new research combined the mechanisms with blockchain and zero-knowledge 
proof techniques. The blockchain is the ideal candidate to be used for storage of relevant audit data in 
an accessible manner, however, because all data written to the blockchain is visible to every party 
additional machinery is required. ZKP protocols enable parties to publish proofs about statements 
without revealing secrets per se (witnesses) and are therefore an ideal tool to integrate blockchain 
with the confidentiality preserving MPC functionality. 

Sánchez [13] proposed Raziel, a system that combines MPC and ZKP to guarantee the privacy, 
correctness and verifiability of smart contracts. The idea underlying Raziel is a smart contract which 
also guarantees correctness of auctions besides the standard properties by leveraging the ZKP 
mechanism. The validity proofs can also be shown to third parties and are therefore publicly verifiable. 
Another approach to verifiable auctions has been presented in [3] and a software prototype can be 
found on GitHub1. The solution combined homomorphic commitments and ZKP together with a 
verifiable comparison protocol to achieve a secure FPSBA. The system is verifiable and privacy 
preserving against outsiders, however, a trusted auctioneer is still required because he learns all bids. 

Furthermore, Blass and Kerschbaum [11] presented Strain, a protocol to implement sealed-bid 
auctions on top of blockchains that protects the bid privacy against fully malicious parties. The protocol 
basically stores encrypted bids in the blockchain. By using a specific encryption scheme with 
homomorphic properties in combination with bitwise encryption, they enable bidders to run 
interactive protocols in zero knowledge generating relations proofs and therefore, support auctions in 
a peer to peer fashion. Albeit being scalable by the peer-to-peer nature, the protocol still needs a semi-

 

 

1 https://github.com/HSG88/AuctionContract 

https://github.com/HSG88/AuctionContract
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trusted auctioneer as arbiter and requires all parties to be online during all auction phases. It also leaks 
the full order of all bids compared to the winning bid as required by auctions. 

Kosba et al. [14] presented Hawk, a framework to establish privacy preserving smart contracts on the 
Ethereum blockchain. Hawk is intended to protect transaction data on chain by leveraging zero-
knowledge proof techniques. The goal was towards easy to use framework providing a compiler 
managing the cryptographic tasks. This work could be relevant for the specific credit system embedded 
in SlotMachine which also has some privacy requirements. Up to our knowledge, the Hawk framework 
has still not been released yet on the project homepage2. 

In another work, Galal and Youssef [15] utilized Zero-Knowledge Succinct Noninteractive Argument of 
Knowledge (zk-SNARK) [16] to realize privacy friendly auctions on a blockchain. The solution is not well 
suited because it makes use of a trusted auctioneer who learns the bids. This is contrary to our goals; 
however, the approach contains interesting aspects and by realizing the auctioneer in a distributed 
fashion by MPC, the system closely resembles the data flow in SlotMachine.  

Additionally, cryptocurrencies have been used to incentivize fairness and correctness, and avoid 
deviations from the MPC or ZKP protocol. In this systems money has to be escrowed in deposits which 
are only returned if the behave honestly. This in effect encourages parties to strictly follow the 
protocols to avoid the financial penalty. Protocols in this direction have been proposed in [17]–[20]. 

2.5 Privacy Aspects of Blockchain Tokens 

The usage of tokens is still the only widely applied use case for blockchain-based systems. Tokens can 
be used as a kind of money or currency, either with a concrete value in relation to legal currencies or 
with a more abstract value. Such tokens are called fungible or interchangeable tokens. There are also 
non-fungible tokens, which represent some kind of collectible and have some properties that render 
each token potentially individual. A currency, thus a fungible token, is often build-in in a blockchain-
based system, like the currency Bitcoin in the Bitcoin system and Ether in Ethereum. The programming 
capabilities allow to build further tokens on top of those systems. To that regard, Bitcoin‘s flexibility is 
more limited due to its programming language, which is not Turing-complete. Ethereum allows the 
creation of more complex programs, which are called smart contracts. Ethereum is also the platform 
with the broadest application of various tokens. In order to have some compatibility between the 
tokens and to allow the reuse of reviewed interfaces and code, there exist several token standards, 
which are described with Ethereum Improvement Proposals. The main standard for fungible tokens is 
ERC-20 [21]. For non-fungible tokens, Ethereum’s most widely used standard is ERC-721. There are a 
lot more properties which have to be taken into account when choosing or designing a suitable token 
for specific use cases. One extensive classification is presented by Oliveira et al. [22]. There are tokens 
with a connection to physical objects and purely virtual tokens. Furthermore, there are various more 
technical aspect like the use of layers beside the blockchain.  

Bitcoin was designed with features which allow a level of privacy. Bitcoin addresses are not directly 
linked to an identity, which means that the identity of an account can be kept secret. This kind of 
anonymity is not very strong, because it is possible to extract information from transactions and their 
senders and receivers, and sometimes referred to as pseudo-anonymity [23]. Only if the behaviour of 

 

 

2 http://oblivm.com/hawk/download.html 

http://oblivm.com/hawk/download.html
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a user is accordant with certain privacy guidelines, its anonymity can be kept. There exist also a range 
of services, like CoinJoin [24] and CryptoNote that assist in obfuscating coin flows and protecting 
identities. There are also some crypto currencies with stronger privacy features build-in, like Monero 
[25], Zcash and Dash. Monero uses ring signatures to obscure the sender, ring confidential transactions 
to hide the amount and stealth addresses to hide the receiver. Zcash supports transactions with zk-
SNARKs out of the box, in contrast to other crypto currencies, where they have to build laboriously on 
top. 

For several reasons, the frame conditions of token usage on smaller permissioned networks differ from 
a token usage on large public networks. The typical consensus mechanism for large public networks is 
still a Nakamoto consensus based on proof-of-work. It only makes limited sense to apply this consensus 
mechanism to systems with low computational power. Frameworks like Hyperledger Fabric and 
Tendermint [26] deviate from the Nakamoto consensus and use stricter types of consensus instead, 
because they were designed with a focus on potentially small permissioned networks. Both of those 
frameworks also have capabilities for writing Turing-complete smart contracts and thus for creating 
tokens similar as with Ethereum. But also on permissioned networks privacy can be an issue. 
Androulaki et al. [27] presented one approach of a privacy-preserving token mechanism on top of 
Hyperledger Fabric where the permissioned setting is leveraged to fabricate NIZK proofs. 
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3 Multiparty Computation (MPC) 

3.1 Overview 

Multiparty computation is a protocol between a number of players P1,...,Pn who each initially hold 
inputs and we can then securely compute some function f on these inputs. This should hold, even if 
players exhibit some amount of adversarial behaviour. The goal can be accomplished by an interactive 
protocol π that the players execute. Intuitively, we want that executing π is equivalent to having a 
trusted party T that receives privately xi from Pi, computes the function, and returns yi to each Pi. With 
such a protocol we can — in principle — solve virtually any cryptographic protocol problem. The 
general theory of MPC was developed in the late 80s and overviews of the theoretical results known 
can be found in [28], [29]. 

Many different MPC protocols have been proposed in the past and they achieve very different 
properties and security guarantees. The minimal cryptographic properties of any MPC protocol are 

• Correctness 

• Input Privacy 

Additional properties are often desired, such as 

• Fairness 

• Guaranteed output delivery 

Besides the security properties, another way to categorize and assess MPC protocols by their adversary 
models. The most important considerations when it comes to adversaries are: 

• Threshold security versus security against dishonest majority 

• Unconditional versus computational security 

• Active versus passive security 

• Adaptive versus static security 

• Synchronous versus asynchronous communication 

• Broadcast channel versus point-to-point communication 

From the very basic performance figures given by the nature of different solutions in SlotMachine we 
opted to start with the most efficient protocols for active security in the honest majority model. First 
tests already showed that dishonest majority protocols are performance wise out of any feasible range 
for the given requirements and do not fit to our needs. Therefore, in the following we will shortly 
mention the most efficient solutions published for this type of protocols which seem to integrable with 
existing open-source solutions and have optimization potential for batch processing. 

Until recently protocols for active security have been considered rather inefficient. However, Lindell 
and Nof [30] showed more efficient protocols with great practical impact. They identified that privacy 
of active protocols is already preserved by existing passive protocols, and the protocols are susceptible 
to additive attacks. In [31] the protocols have been further improved and are the best known solution 
in the honest majority setting introduce only minimal overhead if processing can be batched. 
Furthermore, both protocols  [30], [31] provide the highest level of security, i.e., information theoretic 
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security, and are therefore also quantum-safe. Additionally, [32] showed how to achieve fairness for 
the proposed protocols for active security with batch wise multiplication verification. Finally, [33] 
introduced a very efficient protocol to convert passive secure protocols into active secure ones with 
very little overhead. They basically apply a type of batch verification for multiplication operations, 
which can be done in bulk before the final result is revealed. Overall, the achievements in the last 3 
years tremendously improved the state-of-the-art for active secure protocols in the honest majority 

setting and will be the starting point for further developments in SlotMachine. 

3.2 Relation to SlotMachine Requirements 

MPC has been selected as a core technology in PE for privacy protection of sensitive data and to enable 
collaboration on them in a secure way. On the system level the technology will be used to address the 
following non-functional requirements defined in D2.1: 

priv_1, priv_2, priv_3, priv_4, priv_8, priv_9, 
priv_10 

MPC will be used to fulfil the core confidentiality 
(privacy) requirements by computing on 
encrypted data 

priv_6 MPC should assist in the detection of malicious 
clients although the input is encrypted 

Additionally, in the selection process of MPC solutions and protocols following requirements are 
considered important when reviewing the state of the art: 

perf_1, perf_2, perf_4 Main systems parameters to be supported by 
the PE for practical application of the technology 

perf_9 The system should enable optimizations and 
interleaved/parallel execution 

port_1 The system shall be based on open source 
solutions 

Finally, because the PE is intended as an easy deployable and usable MPC system which is flexible but 
tailored to the specific tasks in SlotMachine, MPC will contribute to the following functional 
requirements. However, the protocols and frameworks analysed in this report are only matched 
against the basic functionalities of an MPC protocol and not application specific requirements which 
will be later integrated during the SlotMachine implementation phase. 

Pe_2, Pe_7, Pe_8, Pe_9, Pe_13 Confidentiality requirements directly provided 
by the MPC protocol 

Mpc_1, Mpc_9, Mpc_11, Mpc_15, Mpc_16, 
Mpc_17 

Capabilities which have to be supported by the 
raw protocols (gates, circuits, data types, ….) 
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3.3 Overview of MPC Frameworks 

For the analysis of existing open source software implementations of MPC protocols we started from 
the frameworks listed in AwesomeMPC-Frameworks3 and selected the most promising candidates. 

To evaluate the maturity and adequacy in SlotMachine different criteria were important for us: 

1. Installation 

2. Tests / Demos / Examples 

3. Documentation 

4. Programming Language 

The amount of information and software prototypes seem overwhelming, especially if also the number 
of frameworks listed as retired4 are considered. Out of the many available frameworks we identified 
MP-SPDZ and MPyC as the most relevant for SlotMachine and analysed them in detail. Additionally, 
we also investigated solutions with fixed numbers of parties (2 and 3). After initial review we focused 
on ObliVM, Obliv-C, ABY and EMP-SH2PC as most promising candidates. 

3.3.1 MP-SPDZ (forked from SCALE-MAMBA) 

Summary: Provides a wide variety of protocols for both arithmetic and boolean circuits; 
Supports many protocols, active and passive; implements a virtual machine that executes byte 
code compiled from a Python-like language; fork of SCALE-MAMBA 
(https://github.com/bristolcrypto/SPDZ-2); more flexible and extendible as SCALE-MAMBA; 
more protocols are supported and better for benchmarking than SCALE-MAMBA 

Location: https://github.com/data61/MP-SPDZ 

Authors / Maintainer: Marcel Keller 

Dependencies / Required Software: 

• Make, GCC or Clang, Python, Libsodium, Boost, OpenSSL 
• MPIR with C++ support 
• NTL (optional) 

Advantages: 

• Efficient and fast 

Disadvantages: 

• No obvious way to directly use from 
other software 

 

Development Status: Very active, but only one developer (last commit July 2021) 

 

 

3 https://github.com/rdragos/awesome-mpc#frameworks  
4 https://github.com/rdragos/awesome-mpc#retired-software 

https://github.com/bristolcrypto/SPDZ-2
https://github.com/bristolcrypto/SPDZ-2
https://github.com/data61/MP-SPDZ
https://github.com/rdragos/awesome-mpc#frameworks
https://github.com/rdragos/awesome-mpc#frameworks
https://github.com/rdragos/awesome-mpc#retired-software
https://github.com/rdragos/awesome-mpc#retired-software
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3.3.2 MPyC 

Summary: A generic framework that allows to write MPC-code directly in Python (forked from 
http://viff.dk/); based on secret sharing with support for honest majority multi-party protocol; 
secure against semi-honest adversaries 

Location: https://github.com/lschoe/mpyc 

Authors / Maintainer: Berry Schoenmakers 

Dependencies / Required Software: 

• Python 3.6 or higher 

• gmpy2 (optional) 

Advantages: 

• Easy to set up (there is a 
https://pypi.org/project/mpyc/ 
package) 

• Easy to integrate into existing 
software 

• Efficient and fast 

Disadvantages: 

• Slow on purely local computations 

 

Development Status: Very active, but only one developer (last commit July 2021) 

 

3.3.3 FRESCO 

Summary: A Java framework implementing the SPDZ/SPDZ2k and TinyTables protocols 

Location: https://github.com/aicis/fresco 

Authors / Maintainer: The Alexandra Institute https://alexandra.dk 

Dependencies / Required Software 

• Java [C/C++ (using JNI)] 

Advantages: 

• Good documentation 

• Reasonably easy to use 

Disadvantages: 

• Limited protocols 

• SPDZ2k implementation is incomplete 

• Poor performance 
 

Development Status: Somewhat active (last commit July 2021) 

 

http://viff.dk/
http://viff.dk/
https://github.com/lschoe/mpyc
https://pypi.org/project/mpyc/
https://github.com/aicis/fresco
https://alexandra.dk/


D3.1 REPORT ON STATE-OF-THE-ART OF RELEVANT CONCEPTS  

 
SlotMachine!! 

  
 

 

 

 20 

 

 

 

3.3.4 ObliVM 

Summary: A Programming Framework for Secure Computation Compiler 
(written in Java) for a C-like language 

Location: https://github.com/oblivm/ObliVMLang 

Authors / Maintainer: Chang Liu, University of Maryland 

Dependencies / Required Software 

• Java 8 

Advantages: 

• None 

Disadvantages: 

• Could not be benchmarked properly 

because of non-deterministic program 

termination 

• Very inefficient (high number of gates, 

scaling badly) 

• Anecdotally, performance is bad and 

highly variable 

• Project has been abandoned 
 

Development Status: Inactive (last commit November 2015) 

 

3.3.5 Obliv-C 

Summary: Compiler (written in OCaml) for the C-like Obliv-C language 

Location: https://github.com/samee/obliv-c https://oblivc.org 

Authors/Maintainer: Samee Zahur & David Evans, Security Research Group, University of Virginia 

Dependencies / Required Software 

• libgcrypt 
• OCaml 
• OCaml libraries: batteries 

Advantages: 

• Reasonably easy to install 

• Interfaces with C code 

• Best performance 

Disadvantages: 

• No active development in recent years 

• Sparse, incomplete documentation 

 

Development Status: Somewhat active (last commit June 2021) 

https://github.com/oblivm/ObliVMLang
https://github.com/samee/obliv-c
https://oblivc.org/
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3.3.6 ABY 

Summary: A Framework for Efficient Mixed-Protocol Secure Two-Party Computation C++ 
framework to programmatically build circuits from gates (supports AND, XOR, OR, ADD, MUL, 
SUB, GT, MUX, INV) 

Location: https://github.com/encryptogroup/ABY 

Authors / Maintainer: Daniel Demmler, Thomas Schneider and Michael Zohner, Cryptography 
and Privacy Engineering Group (ENCRYPTO), TU Darmstadt 

Dependencies / Required Software 

• Boost 
• libgmp 

Advantages: 

• Very efficient (low number of gates) 

• Good performance 

Disadvantages: 

• Could not be benchmarked properly 
because of non-deterministic program 
termination when run via script 

 

Development Status: Somewhat active (last commit July 2021) 

 

3.3.7 EMP-SH2PC 

Summary: Semi-honest Two Party Computation Based on Garbled Circuits Part of the EMP 
(Efficient MultiParty computation) toolkit, a C++ framework to programmatically build circuits 
from functions 

Location: https://github.com/emp-toolkit/emp-sh2pc 

Authors / Maintainer: Xiao Wang, Alex J. Malozemoff and Jonathan Katz, University of Maryland 

 

Dependencies / Required Software 

• other parts of EMP toolkit 

Advantages: 

• ? 

Disadvantages: 

• Little to no documentation 
 

Development Status:  Active (last commit July 2021) 

 

https://github.com/encryptogroup/ABY
https://github.com/emp-toolkit/emp-sh2pc
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3.4 Evaluation Results 

Because the field of MPC implementations as a whole is still immature, it is difficult to judge the 
maturity of individual projects. This is reflected in the wide variety of approaches to interoperability. 
While some frameworks (like MP-SPDZ) provide only self-contained environments that exclusively 
read and write specially prepared files, others are almost regular libraries that integrate into their 
respective language environments – Python in the case of MPyC, Java in the case of FRESCO, and C in 
the case of Obliv-C. 

Out of the above-listed frameworks, only MPyC and MP-SPDZ (both almost exclusively developed by 

one person) have seen sustained development over the respective project’s lifetime. The others seem 

to be in maintenance mode. We therefore decided to investigate these two frameworks more 

thoroughly. 

Table 1 MP-SPDZ speed of basic operations on vectors. 

Delay [ms] Max(5/100) [s] Mul(100) [s] Mul(1000) [s] 

0 1,25967 0,97966 0,676558 

10 21,3671 1,13602 10,6649 

20 41,5928 2,21266 20,8486 

30 61,6835 3,28712 31,0178 

40 81,8286 4,36458 41,1688 

50 101,969 5,43567 51,3525 

60 122,148 6,51935 61,6066 

70 142,311 7,59087 71,7877 

80 162,559 8,66017 91,9108 

90 182,768 9,73845 92,102 

100 202,967 10,8134 102,274 

 

We quickly found that it is important to compare computations under (somewhat) realistic conditions. 

A good example is given in Table 1 below, which compares the runtime of a simple multiplication of 

two vectors of 100 32bit integers each, and a slightly more complicated function that computes the 

maximum 5 elements out of a vector of 100 32bit integers, running on MP-SPDZ. Considered purely as 

a local computation, both functions are close to each other in their runtime, but as soon as any kind of 

network delay is added to the simulated runs (by way of the command tc qdisc add dev lo 

root netem delay <N>ms; the numbers given in the table refer to the two-way delay, so N is 

set to half the listed value), their runtimes differ from each other by about a factor 20. Notice this also 
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means that local performance (as measured for example on a single computer without any induced 

delay) does in no way indicate the performance to be expected under network conditions — in the 

one case, the runtime goes from one and a quarter second to more than twenty seconds, while in the 

other case, it goes from just under one second to slightly more than one second. 

The picture is further complicated when comparing the results of MP-SPDZ with those of MPyC. While 

on a purely local level finding the maximum five elements out of a vector of 100 elements is more than 

ten times slower with MPyC, under any kind of realistic delay, MPyC is faster than MP-SPDZ. This is 

even more pronounced for the multiplication tests, which demonstrates another important factor in 

analyzing MPC frameworks: the necessity of domain-specific optimizations. MP-SPDZ uses an 

optimizing compiler, but of course this cannot guarantee that the resulting code is actually optimal. 

The multiplication tests for MP-SPDZ are written as one would write them for ordinary computations 

— first the two input vectors are multiplied element by element, then each element is revealed (to 

prevent the computation from being “optimized away” by the compiler). This means that for every 

vector element, two rounds of communication are necessary. Optimally, the multiplications would be 

batched such that the whole operation would take only one round of communication, but this would 

necessitate either a “sufficiently smart” compiler or the use of specialized vectorized operations by the 

programmer. 

The MPyC version of the multiplication tests is written in the same style, but this framework does not 

use a compiler for a-priori optimization of computations, and instead relies on asynchronous 

computation and Python’s highly optimized network stack, even though use of specialized vector 

primitives is also possible. See Table 2 for results. 

Table 2 MPYC measurement results for basic functionality. 

Delay [ms] Max(5/100) [s] Mul(100) [s] Mul(1000) [s] 

0 15,187632 0,195708 1,143771 

10 25,560149 0,145964 1,266955 

20 39,508425 0,262731 1,285819 

30 54,102866 0,328410 1,259663 

40 69,55985 0,393291 1,187533 

50 84,931678 0,480012 1,145374 

60 100,339924 0,498418 1,161129 

70 115,254103 0,507936 1,356296 

80 130,613401 0,749435 1,222092 

90 145,464207 0,827996 1,255088 

100 161,582399 0,704458 1,352546 
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In summary, estimating the performance achievable by MPC frameworks is difficult because it requires 
reasoning about “rounds of communication”, which is a rather unintuitive notion that additionally 
depends on implementation details of the specific frameworks. However, we found MPyC to be the 
most appealing of the frameworks we investigated. It combines ease of setup and use with excellent 
efficiency and speed (if one keeps in mind that measurements obtained locally are in no way indicative 
of real-world performance). However, more testing is needed to better understand the performance 
for specific tasks encountered in SlotMachine and future work will do a deep dive in the 
implementation of optimization tasks for assignment problems with both, deterministic algorithms as 
well as evolutionary ones. 

3.4.1 Systems based on Garbled Circuits 

For evaluation, we implemented the same simple functionality in all garbled circuit frameworks 
presented in Section 3.2. The task was to find and return the maximum element of two unsorted lists, 
which is related to the main algorithms applied in basic auction protocols. In fact, the problem already 
comprises substantial complexity when it comes to the computational task involved. Every resulting 
program would be tested by running it in two different terminals on the same machine, being given 
two different, but equally long lists of integers. 

Even though we were in all cases able to write programs that produced the correct solution, we found 
that not all of them would terminate reliably, that is: one or both of the running instances would keep 
running (sometimes consuming CPU time, sometimes not) and not shut down without user 
intervention. This prevented us from performing a systematic performance evaluation of several of the 
systems. The results are summarized in Table 3 and Figure 1. 
 
 

input size system number of AND gates 

2 * 100 ObliVM 602620 

 ABY 12736 

 OblivC (linear) 12800 

 OblivC (recursive) 19104 

2 * 500 ObliVM 121715434 

 ABY 63936 

 OblivC (linear) 64000 

 OblivC (recursive) 95904 

 Table 3: Peformance comparison of GC frameworks 
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 Figure 1: Comparison of variants based on garbled circuits (GC) 

 

4 Verifiable Computing (VC) for Auditing 

4.1 Introduction 

Because MPC has only limited scalability and the feasible number of compute nodes will be between 
3 and 7, the trustworthiness of the system could have some serious issues. In the end the system will 
still be an outsourcing scenario from the point of view of individual bidders who will not be able to run 
their own nodes and will have to trust the system. This means that security is governed by the non-
collusion assumption of the MPC system which is reasonable for the privacy protection of individual 
bids, but not so appealing when it comes to transparency. With a system straightforwardly realized as 
described, a bidder has no means to check whether the computation was done correctly, and their 
own bid was also considered as expected. To allow bidders to do their own checks on the computation, 
we have to add additional technologies which introduce public verifiability for auctions allowing the 
bidder to check that the auction was run correctly, i.e., the highest bid won, and their own bid was also 
considered. This objective should hold up to the extreme case where all the parties involved in the 
computation are corrupted, and even if the party who wants to verify the result was not participating. 
However, the technologies have to work in a way that still protects the privacy of the bids, i.e., no 
single entity or dishonest minority is able to recover the bids. 

A first mechanism for auditable MPC has been presented in [34] which was designed to make in 
particular the SPDZ type of protocols publicly auditable. The approach is already an improvement over 
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the traditional solution to this, which requires every party to commit to all their secret data and to 
prove in zero-knowledge the correct computation of every outgoing message they send. In principle, 
the approach introduces commitments on the input values which are then used as anchor to retrace 
the computation by the auditor or anyone who has access to the bulletin board. This approach 
introduces an auditor which has to perform substantial computational work. Furthermore, in addition 
to an already very expensive offline phase in the SPDZ protocol (which is already a bottleneck to be 
avoided in SlotMachine), the generation of proofs for all intermediate results leads to unusable 
performance for any practical application. Nevertheless, the idea of only proving relations on 
commitments instead of plaintext data is extremely useful for our purposes and the combination with 
blockchain. 

Fortunately, zero-knowledge proof techniques made tremendous progress in recent years, especially 
since the introduction of “Zero-Knowledge Succinct Non-Interactive Argument of Knowledge.” These 
so called zk-SNARKS can be a game changer in the design of verifiable computing as desired in 
SlotMachine. Hence, it is now feasible to use zero-knowledge proof techniques to verify computation 
in a naive way and still get extremely efficient systems. In the following we give a short overview of 
the relevant protocols we identified which are also accompanied by open-source software 
implementations. As the development of the protocols itself would be out of scope for SlotMachine, 
we will research methods to integrate one of the best fitting existing solutions into our system and 
estimate the expected performance. 

4.1 Relation to SlotMachine Requirements 

VC has been selected as a method to increase the trust into the systems. It is complementary to MPC 
and will help to trace and monitor the correct working of the system for relevant stakeholder, ideally 
for all participants in the system. The technology will be used to address the following non-functional 
requirements defined in D2.1: 

Perf_1, Perf_2, Perf_3 The system parameters must be supported to be 
practical. 

Priv_6, Priv_7, Priv_12 Will be core method to verify the correct 
behaviour of AU and PE without revealing 
sensitive information. Cloud also help to protect 
privacy of credit system. 

Because the VC sub-system must be compatible with the MPC technology used and integrated with 
PE, it is also relevant for the following functional requirements. 

Pe_13, Pe_14, Pe_15, Pe_16, Pe_17 VC method must be interoperable with PE and 
also partly integrated with it. 

Mpc_15, Mpc_16, Mpc_17 It will help to assure the correctness of the AU 
input in privacy preserving way. 
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4.2 Overview of Protocol Families 

4.2.1 Systems based on linear PCPs 

Recent advances in SNARKs (Succinct Non-interactive Arguments of Knowledge) are making it more 
and more feasible to outsource computations to the cloud while obtaining cryptographic guarantees 
about the correctness of their outputs. The most prominent protocols used today by far are Pinocchio 
[35] and the further optimized version proposed by Groth et al. [36], [37]. They are extremely efficient 
for practical applications and made their way already in many mainstream applications. The major 
drawback of this solutions for standard applications where the prover is in possession of the witness, 
is the “toxic waste” needed. This means that the system makes use of some global secure parameters 
which must be used in the setup phase but need to be deleted afterwards for secure operation. In fact, 
anybody in possession of the secure parameters to generate the so-called common reference string 
(CRS) can generate arbitrary proofs without knowing the witness. 

To overcome the drawback for this type of SNARKs, novel systems have been proposed as presented 
in the next chapters. Nevertheless, novel extensions have also been developed which help to 
circumvent the problem for many application scenarios by making the CRS updateable and/or 
universal [38]–[40]. The main existing implementations of this approach are PySNARK5 and libsnark6. 

Nevertheless, all work mentioned so far does not deal with the privacy of the inputs of the 
computation, therefore, it is natural to ask if this technology can be combined with MPC. Ideally in 
SlotMachine the privacy engine should be able to generate proofs for correct operation but does not 
have access to the inputs of the individual parties in plaintext. The only known proposal so far in this 
direction was by Schoenmakers in his Trinocchio system [41]. As its name suggests, it is based on 
Pinocchio [35], and allows for cryptographically verifiable computations, potentially with less effort 
than the computation itself. Moreover, in a follow-up proposal Pinocchio was made adaptive (or “hash-
and-prove”) and even combined in with ideas from Trinocchio [42] leading to an adaptive zero-
knowledge protocol for computation independent commitments also compatible with MPC. 

Although the current state of the art seems very promising it still has various problems to overcome 
for application in SlotMachine. It is unclear if and how to combine universal zk-SNARKS with MPC-
based Pinocchio and if they could be lifted to be used with more efficient Groth version or another 
proof system in general. Allowing for a trustworthy —possibly also done by MPC— computation of a 

CRS also depends on the use case. 

4.2.2 Discrete log-based systems 

In [43] the authors provide a zero-knowledge argument called BCCGP-sqrt for arithmetic circuit 
satisfiability. It is based on an efficient zero-knowledge argument of knowledge of openings of two 
Pedersen multi-commitments satisfying an inner product relation. It has logarithmic communication 
complexity as well as logarithmic interaction and linear computation complexity for both the prover 
and the verifier.  

 

 

5 https://github.com/Charterhouse/pysnark 
6 https://github.com/scipr-lab/libsnark 

https://github.com/Charterhouse/pysnark
https://github.com/Charterhouse/pysnark
https://github.com/scipr-lab/libsnark
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A more versatile and extended version of the above has been presented in [44]. The protocol is called 
Bulletproofs and requires no trusted setup. Bulletproofs are used to show that an encrypted plaintext 
is well formed, e.g., that it is within a given margin or range without revealing information about the 
plaintext of the encrypted message. Contrary to SNARKs, Bulletproofs do not depend on a CRS 
generated from toxic waste, however, verification is costlier. Nevertheless, it supports proof 
aggregation with only O(log(m)) overhead and better amortized cost. 

Interestingly, Bulletproofs were developed to increase the privacy of cryptocurrencies, which is also 
relevant in the context of SlotMachines. By application of this technique, transaction can be proven 
valid without revealing money or token flows. Various implementations are mentioned on the 
homepage7. Additionally we found another useful version of Bulletproofs in the repository of Hyrax8. 

According to our analysis, Bulletproofs together with Pedersen commitments seem an alternative 
approach to the adaptive Pinocchio variant of zk-SNARKS. It does not require any trusted setup, range 
proofs are supported and can even be batched. However, it is unclear if it can be combined with MPC 
and more research is needed if selected for SlotMachine. 

Hyrax [45] is another framework for proofs based on discrete logarithms and an extension to 
Bulletproofs. According to the authors, Hyrax’s proofs are configured to be small and fast and a useful 
point in a large trade-off space for this type of proof systems. The software repository is located on 
GitHub9. 

4.2.3 Short PCP 

Most prominent and available system from this category is called zk-STARK [46]. It is a zero-knowledge 
proof system that no longer relies on a trusted setup where the “toxic waste” parameters are 
initialized. This together with the long-term post-quantum security property make it a very attractive 
system for many applications. The name zk-STARK stems from the basic properties of the scheme. It is 
zero-knowledge, non-interactive, asymptotically optimal in efficiency and transparent.  

Currently zk-SNARKs are roughly 1000x shorter than zk-STARK proofs, so they cannot easily replace 
SNARKs in all applications, it has to be ensured that the use case can support the overhead in size. 
Additionally, as discussed in [46], many of the alternative systems which have been implemented to 
realize zero knowledge proofs outperform zk-STARK for sufficiently small-size computations, for low-
depth parallel computations, and/or for batched and amortized computations. Although this might not 
be a problem for the SlotMachine use case it seems that the hash-based nature of zk-STARK, which 
provides the post-quantum security, is problematic for MPC integration. We are not aware of any 
attempt to realize multi-stakeholder proofs with input privacy based on MPC or other methods. 
Therefore, this technology is not in the focus for PE integration but may be useful for related tasks in 
SlotMachine. A mature implementation of STARKs is available on GitHub10. 

 

 

7 https://crypto.stanford. edu/bulletproofs/ 
8 https://github.com/hyraxZK/bccgp 
9 https://github.com/hyraxZK/hyraxZK 

10 https://github.com/elibensasson/ libSTARK 

https://crypto.stanford.edu/bulletproofs/
https://github.com/hyraxZK/bccgp
https://github.com/hyraxZK/hyraxZK
https://github.com/elibensasson/libSTARK
https://crypto.stanford.edu/bulletproofs/
https://crypto.stanford.edu/bulletproofs/
https://github.com/hyraxZK/bccgp
https://github.com/hyraxZK/hyraxZK
https://github.com/elibensasson/libSTARK
https://github.com/elibensasson/libSTARK
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4.2.4 Other Solutions 

Another type of zero-knowledge proof system which is very efficient and relevant for verifiable 
computing is represented by ZKBoo [47] and ZKB++ [28]. They have been used efficiently in MPC-in-
the-head computations, but we doubt that they can be easily integrated with basic MPC. They work 
on Boolean circuits, which is not what we need in SlotMachine. Implementations for ZKBoo11 are 
available and ZKB++ is part of the picnic submission to the NIST post-quantum cryptography 
challenge12. They are also not succinct which makes them less efficient for the verification of larger 
computations and no adaptive variants have been proposed so far to work on committed data. 

The same is true for Ligero [48], a lightweight sublinear argument of knowledge without a trusted 
setup. It is also a relatively simple protocol for NP with communication complexity proportional to the 
square-root in the circuit size. It has better performance for larger circuit sized than ZKB++ but is based 
on collision resistant hash functions, which renders it less useful in combination with MPC for input 
privacy and cannot be used in the PE. 

 

4.3 Overview of Available Frameworks 

Contrary to our analysis of MPC, which is based on intensive testing and benchmarking, for verifiable 
computing approaches we only did code review and analysis but no implementations. Benchmarking 
results will be added in later reports when dedicated tests for our specific use case and the respective 
MPC protocol have been done. Nevertheless, for our first review the following software packages have 

been analysed. 

4.3.1 PySNARK 

Summary: Library for programming zk-SNARKs directly in Python 

Location: https://github.com/meilof/pysnark 

Authors / Maintainer: Meilof Veeningen, Philips Research 

Dependencies / Required Software 

• Python 3 
• qaptools (optional backend) 
• libsnark (optional backend) 
• snarkjs (optional backend) 

Advantages: 

 

 

11 https://github.com/Sobuno/ZKBoo 
12 https://github.com/Microsoft/Picnic 

https://github.com/Microsoft/Picnic
https://github.com/meilof/pysnark
https://github.com/Sobuno/ZKBoo
https://github.com/Microsoft/Picnic
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• Easy to use 
• Easy to set up (depending on backend) 

Disadvantages: 

• Little documentation 

Development Status: Active, but only 1 developer (last commit June 2021) 

 

4.3.2 libsnark 

Summary: A C++ library for zkSNARK proofs 

Location: https://github.com/scipr-lab/libsnark 

Authors / Maintainer: SCIPR Lab 

Dependencies / Required Software 

• GCC/Clang, CMake, GMP 
• libff 
• libfqfft 
• ate-pairing 
• xbyak 
• libsnark-SUPERCOP 

Advantages: 

• De-facto standard in research  community 

Disadvantages: 

• Many dependencies, difficult to set up 
• Not production-ready 

Development Status: Somewhat active (last commit July 2020) 

 

  

https://github.com/scipr-lab/libsnark
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4.3.3 libSTARK 

Summary: A library for zero knowledge (ZK) scalable transparent argument of knowledge (STARK) 

Location: https://github.com/elibensasson/libSTARK 

Authors / Maintainer: Eli Ben-Sasson, SCIPR Lab 

Dependencies / Required Software 

• GCC, OpenMP 

Advantages: 

• Under heavy development and progressing fast 

Disadvantages: 

• Not production-ready 

Development Status: Inactive (last commit December 2018) 

 

4.3.4 Bulletproofs 

Summary: Bulletproofs are short non-interactive zero-knowledge proofs that require no trusted 
setup. 

Location: https://crypto.stanford.edu/bulletproofs/  

Various implementations exist: 

• https://github.com/apoelstra/secp256k1-mw/tree/bulletproofs: 

Summary: An implementation of Bulletproofs in C by Andrew Poelstra and Pieter Wuille. 
Uses constant time operation for proving and is very fast. Includes a tool for converting 
Pinocchio circuits to Bulletproof circuits and generating proofs for arbitrary statements. 

Authors / Maintainer: Andrew Poelstra 

Development Status: Unclear (project is branch of a fork of a fork) 

• https://github.com/bbuenz/BulletProofLib: 

Summary: An implementation of Bulletproofs in Java. Includes a general tool for 
constructing Bulletproofs for any NP language using the Pinocchio tool chain. Prototype 
code. 

Authors / Maintainer: Benedikt Bünz 

Development Status: Inactive, only one developer (last commit February 2019) 

• https://github.com/dalek-cryptography/bulletproofs: 

Summary: A pure-Rust implementation of Bulletproofs using Ristretto. 

https://github.com/elibensasson/libSTARK
https://crypto.stanford.edu/bulletproofs/
https://github.com/apoelstra/secp256k1-mw/tree/bulletproofs
https://github.com/apoelstra/secp256k1-mw/tree/bulletproofs
https://github.com/bbuenz/BulletProofLib
https://github.com/bbuenz/BulletProofLib
https://github.com/dalek-cryptography/bulletproofs
https://github.com/dalek-cryptography/bulletproofs
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Authors / Maintainer: Henry de Valence, Cathie Yun, and Oleg Andreev (Dalek 
Cryptography) 

Development Status: Somewhat active (last commit January 2020) 

• https://github.com/hyraxZK/bccgp 

Summary: Independent re-implementations of two protocols due to Bootle et al. and Bünz 
et al. 

Authors / Maintainer: Riad S. Wahby 

Development Status: Inactive (Single commit in February 2018) 

 

4.4 Evaluation Results 

Finally, we give two quick overview tables found in [49] and [45]. They show the main properties of 
the different approaches which are important for selection in application design as discussed in the 
previous sections. They are shown in Figure 3 and Figure 4. 

 

Figure 3: Theoretical comparison of universal realized ZK systems from [49]. 

 

 

Figure 4: Comparison of ZK systems from Hyrax [23]. 

 

Performance measurements have been conducted for PySNARK/qaptools. To test the overall 
performance, we implemented basic tests. In Table 4 we summarize first results for the task of finding 
the maximum element in a list of varying size and producing a proof that the result is indeed the 
maximum element (time in seconds) - sizes of proof and verification keys remain constant at about 
2,5 kB each. The first tests are very promising, and SNARKs could be a valuable tool in SlotMachine. 

https://github.com/hyraxZK/bccgp
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However, more research and implementation work is needed to learn more insights, especially for 
combination with MPC. 

N Data 

generation 

Program 
execution 

Setup 
(equations, 
keys) 

Proof 
generation 

Proof 

verification 

1 0,032 0,001 0,186 0,035 0,038 

10 0,054 0,008 1,351 0,165 0,039 

100 0,285 0,063 11,940 1,280 0,047 

1000 2,567 0,595 148,410 18,986 0,118 

Table 4: Performance figures for proof systems. 

 

5 Evaluation of Blockchains 

5.1 Introduction 

As we have already mentioned, our system should support the PBFT consensus, which enables 
managing the possible adversaries in the network. Moreover, we aim for a solution which is optimized 
for inter-organizational logic, flexible enough to accommodate changes, high-performance to compete 
with the major, non-BFT, consensus algorithms that exist today, such as etcd, zookeeper, consul, etc., 
all of that while providing greater resilience, security guarantees, and flexibility for application 
developers. Therefore, based on this, we have selected Tendermint, as a practical blockchain solution 
that supports PBFT consensus protocol. Tendermint has high performance and can achieve thousands 
of transactions per second (tx/s) on dozens of nodes distributed around the globe, with latency of 
about one second, and performance degrading moderately in the face of adversarial attacks [26]. In 
this section we present the results of the evaluations we have performed on the Tendermint scalability.  

5.2 Tendermint evaluation 

To the best of our knowledge, there is no publicly available evidence on the performance of 
Tendermint in case the number of nodes reaches hundreds or thousands. The performance testing 
with thousands of nodes would require a lot of computational resources and therefore would be 
expensive. We have performed some tests with 100 nodes. The tests are performed on the Amazon 
Cloud AWS EC2 machines, used for the Tendermint nodes. Tendermint is deployed using the testnets 
software (see https://github.com/informalsystems/testnets for more details), which internally uses 
Ansible and Terraform for the infrastructure orchestration and allocation of the required resources. 
The metrics calculated during the tests are stored in the Influx database and visualized using the 
Grafana UI. 

The first experiment is performed with the test load of 10 tx/s sent to each of the 100 nodes within 
the 3 minutes time slot. The second and the third experiment are performed with the test load of 

https://github.com/informalsystems/testnets
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1000 tx/s. The number of the peer nodes, i.e., the nodes each node is connected to, for the first two 
experiments is 100 for node0 and 1 for the other nodes. That network topology is automatically chosen 
by Tendermint, based on the configuration for the number of inbound and outbound connections, 
which is in this case set to 100. In addition, no persistent peers, i.e., the peers to which the connection 
must be established independent of what is specified in the configuration file, are specified. In the 
third experiment, for each node we have specified 10 persistent peers, in the following manner: node1 
-> node10, node20, node30, …, node100; node2 -> node11, node21, node31, …, node1; …; node100 -
> node9, node19, node29, node39, …, node99. Additionally, for each node we set the maximum 
number of inbound and outbound peers to 10, so that each node can create 30 total connections at 
most (10 to the persistent peers + 10 for the inbound connections + 10 for the outbound connections). 
This network topology ensures better communication among the nodes, where each node can reach 
each other node in maximum 3 hops (in both cases when the network chooses the outbound 
connections for e.g. node1 to: either node5 or node6, node15, node25, …, node95, beside the 
connections to the persistent peers, each other node can be reached in maximum 3 hops).  The figures 
below show the block interval time metric for each experiment. It represents the time needed to 
append a new block to the blockchain. As we can see from the figures, for the first experiment it is on 
average ~7s, for the second experiment ~30s, and for the third experiment ~3s. The specified network 
topology seems to largely influence the block interval time. In the first 2 experiments, node0 
experienced the network congestion, since it was connected to all other nodes. The block interval time 
from the third experiment shows that nodes can still communicate with a relatively high 
performance.13 

  

 

Figure 2: The block interval time for the first experiment. 

 

 

13 The block interval time might to a certain extent be influenced by the limited computational resources of the 
machines used for the nodes, which are, in this case, the Amazon t3.medium machines. 
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Figure 3: The block interval time for the second experiment 

 

 

Figure 4: The block interval time for the third experiment 
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6 Conclusions and Recommendations 

In our work on MPC we did intensive testing. The task turned out to be very time consuming with many 
frameworks to check for different properties. Moreover, the frameworks are often missing 
documentation and contain many suspected bugs and unexpected behaviour. For the time being, we 
found MP-SPDZ to be the most comprehensive solution and best suited for testing, and MPyC to be 
the most flexible one for rapid prototyping and testing. However, because results from one 
implementation cannot easily be mapped to another, we decided to implement core algorithms on 
both systems for comparison and consistency checking. In case of 2PC, we found ObliVM to be the 
most mature and reliable system, and we used it as a reference for benchmarking against garbled 
circuit approaches. 

For the case of zk-SNARKS it turned out that this is a very dynamic field with lots of progress. We found 
many different implementations, with some being quite mature. However, when it comes to our 
specific use case with MPC integration, no proper framework was found, and no implementations are 
available. 

Based on the findings in this report and benchmarking results we extracted the current set of 
recommendations to be followed in the upcoming project phase of SlotMachine. 

• As already expected, the existing MPC systems lack scalability for direct application by AUs in 
the SlotMachine. It is not feasible to let every AU be an MPC node. Therefore, we recommend 
distributing the MPC system over 3-4 master nodes which can be statically or dynamically 
assigned by the PE. 

• Given the first performance results we also expect that a passively secure implementation of 
this configuration achieves the performance goals expected by the requirements specification 
task of SlotMachine. This would be a good starting point for further exploration. Actively 
secure solutions are not required by the project, although new results show only minimal 
slowdown in the honest majority setting. Nevertheless, because we are aiming at a publicly 
verifiable MPC solution the active security would not add benefits in terms of robustness. 

• To assure transparency we recommend starting from the approach on adaptive Pinocchio [42]. 
It seems well suited for our use case and integrates with MPC. Therefore, we will implement 
this protocol in a next step and identify the gaps for application in SlotMachine, once the 
platform functionality is fully specified. However, research should already be undertaken to 
circumvent the already known limitations based on the global CRS. 

• Finally, the Tendermint blockchain solution selected turned out to scale very well. Results 
show that it is feasible to let every AU run a blockchain node if wished, i.e., a distributed ledger 
between all AUs is possible. As all parties are known and have to be registered the 
permissioned model is also a good fit. 

Based on this finding, the currently envisioned architectural proposal for the integration of the 
presented technologies on a very high level is presented in Figure 5. The flow resembles a blockchain 
based sealed-bid auction where bids (margins and weights in our case) are committed to on the 
blockchain in the first phase. However, instead of opening the inputs in the second phase, they are 
sent to the MPC system within the PE which computes (optimizes in our case) the best solution and 
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reveals the result together with a proof showing the improvement over previous flight sequences. 
Because the proof is zero-knowledge and all inputs are hidden we achieve privacy and correctness at 
the same time. Furthermore, all AUs will be able to verify the correctness on their own, increasing the 
trust in the SlotMachine platform. However, this is only the currently envisioned architecture and 
many research questions must be solved on the way, i.e., there are many technical risks associated 
with this approach. It is currently not clear if this full integration is possible efficiently and if all aspects 
are implementable with the given resources. The proposal also lacks the integration of the credit/token 
system currently under design to establish fairness and equity. Nevertheless, the presented 
architecture is very appealing from their properties and WP3 should work towards this direction. 

 

Figure 5: Proposal for the cryptographic  
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